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ON SEMILOCAL CONVERGENCE OF A MULTIPOINT

THIRD ORDER METHOD WITH R-ORDER (2 + p) UNDER A

MILD DIFFERENTIABILITY CONDITION

P. K. PARIDA, D. K. GUPTA∗ AND S. K.PARHI

Abstract. The semilocal convergence of a third order iterative method
used for solving nonlinear operator equations in Banach spaces is estab-
lished by using recurrence relations under the assumption that the second

Fréchet derivative of the involved operator satisfies the ω-continuity con-
dition given by ∥F ′′(x)− F ′′(y)∥ ≤ ω(∥x− y∥), x, y ∈ Ω, where, ω(x) is a
nondecreasing continuous real function for x > 0, such that ω(0) ≥ 0. This
condition is milder than the usual Lipschitz/Hölder continuity condition

on F ′′. A family of recurrence relations based on two constants depending
on the involved operator is derived. An existence-uniqueness theorem is
established to show that the R-order convergence of the method is (2+ p),
where p ∈ (0, 1]. A priori error bounds for the method are also derived.

Two numerical examples are worked out to demonstrate the efficacy of our
approach and comparisons are elucidated with a known result.
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1. Introduction

The aim of this paper is to establish the semilocal convergence of a third order
iterative method used for solving nonlinear operator equations

F (x) = 0, (1)

where F : Ω ⊆ X → Y is a nonlinear operator on an open convex subset Ω
of a Banach space X with values in a Banach space Y. This is done by using
recurrence relations under the assumption that the second Fréchet derivative of
the involved operator satisfies the ω-continuity condition. The most well known
second order iterative methods used to solve (1) are Newton’s method and its
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variants. The Kantorovich theorem [15, 19] provides sufficient conditions to en-
sure convergence of these methods. A lot of research [2, 3, 8, 12, 11] has been
carried out to provide improvements in these methods. Third order one point
iterative methods such as the Halley method, the Chebyshev method and the
Super-Halley method [2, 3, 12] are developed to solve (1). These methods are
useful in solving stiff systems of equations [16], where a quick convergence is
required. The main difficulties of these one-point third order iterative methods
are to evaluate the second order derivative of the operator F which is compu-
tationally expensive at times. In fact, a very restrictive condition of one point
iteration of order N is that they depend explicitly on the first N − 1 derivatives
of F . This implies that their informational efficiency is less than or equal to
unity[20]. All these higher order derivatives are also very difficult to compute.
On the other hand multipoint iterative methods[22, 17, 13, 14] which sample F
and its derivatives at a number of points have also gained importance recently.
The restrictions of one point iterative methods may not hold good for multipoint
methods.

The semilocal convergence of these methods by using majorizing sequences
and recurrence relations is also established under the assumptions that the
First/Second Fréchet derivative of the involved operator satisfies the Lipschitz
and the Hölder continuity conditions. Candela and Marquina[2, 3] studied the
convergence of the Halley method and the Chebyshev method under the assump-
tion that F ′′ is Lipschitz continuous by using recurrence relations. Hernández
and Salanova[10] and Hernández[13] studied the convergence of the Chebyshev
method and the second derivative free version of the Chebyshev method by us-
ing recurrence relations under Hölder continuity condition on F ′′. Ye and Li[22]
studied the convergence of the Euler-Halley method under similar conditions.
However, the Lipschitz/Hölder continuity condition on the second derivative of
F may be violated in many problems.

Example. Consider the following nonlinear integral equation of mixed type [9]:

F (x)(s) = x(s) +
m∑
i=1

∫ b

a

ki(s, t)li(x(t))dt− u(s), s ∈ [a, b]

where −∞ < a < b < ∞, u, li, and ki, for i = 1, 2, . . . ,m are known functions
and x is a continuous function.

If l′′i (x(t)) is Li-Lipschitz continuous in Ω, Li ≥ 0, for i = 1, 2, . . . ,m, then
F ′′ does not satisfy any Lipschitz condition, where the sup-norm is considered.
In this case

∥F ′′(x)− F ′′(y)∥ =
m∑
i=1

Li∥x− y∥, x, y ∈ Ω.

Similarly, if l′′i (x(t)) is (Li, pi)-Hölder continuous in Ω, Li ≥ 0, pi ∈ (0, 1] for
i = 1, 2, . . . ,m, then we have
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∥F ′′(x)− F ′′(y)∥ =
m∑
i=1

Li∥x− y∥pi , x, y ∈ Ω.

Here also, F ′′ is not Hölder continuous, when the sup-norm is used.
Recently, Ezquerro and Hernández [7] and Hernández and Romero [11] con-

sidered the more general ω-continuity condition given by

∥F ′′(x)− F ′′(y)∥ ≤ ω(∥x− y∥), x, y ∈ Ω, (2)

where ω(x) is a nondecreasing continuous real function for x > 0, such that
ω(0) ≥ 0, on F ′′. This enables us to study the semilocal convergence of the
Halley method and a family of third order iterative methods respectively. They
proved that R-order convergence of the Halley method is (2 + p), p ∈ (0, 1].

In this paper, the semilocal convergence of a multipoint third order iterative
method used for solving nonlinear equations (1) is discussed. The method is
derived from the Halley method by replacing the second derivative with the
divided difference containing only the first derivatives. The convergence of the
method is established by using recurrence relations under the assumption that
F ′′ satisfies the ω-continuity condition (2). This ω-continuity condition is milder
than the usual Lipschitz/Hölder continuity condition. An existence-uniqueness
theorem is established to show that the R-order convergence of the method
is (2 + p), where p ∈ (0, 1]. A priori error bounds for the method are also
derived. Two numerical examples are worked out to demonstrate the efficacy of
our approach. It is observed that our results are better than those obtained by
Ezquerro and Hernández[7].

The paper is organized in six sections, with the first one giving a detailed
introduction. In Section 2, first we derive a multipoint third order method from
Halley’s well known method. Next, three scalar sequences are constructed and
their properties are studied. The recurrence relations for our method are derived
in Section 3. The convergence analysis based on these recurrence relations of
the method is given in Section 4. In Section 5, two numerical examples are
worked out to demonstrate the efficacy of our approach. It is observed that our
results are better than those obtained by Ezquerro and Hernández[7]. Finally,
the Section 6 forms the conclusion, where the analysis is studied in detail.

2. Construction of scalar sequences {an}, {bn} and {cn} and their
properties

In this section, the construction of a multipoint third order method and three
real sequences with their properties are described in order to study the conver-
gence of the method. The Halley method given in [1] can be given as

yn = xn − F ′(xn)
−1F (xn),

H(xn, yn) = F ′(xn)
−1F ′′(xn)(yn − xn),

xn+1 = yn − 1
2H(xn, yn)[I +

1
2H(xn, yn)]

−1(yn − xn), n ≥ 0.

 (3)
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From Taylor’s formula, we have

F ′(zn) = F ′(xn) + F ′′(xn)(zn − xn) +

∫ zn

xn

F ′′′(x)(zn − x)dx, (4)

where, zn = xn + θ(yn − xn) and θ ∈ (0, 1]. Ignoring the error term in (4), we
get

F ′′(xn)(yn − xn) ≈
1

θ
[F ′(zn)− F ′(xn)].

Using this in (3), we get our two point iteration of order three given by

yn = xn − F ′(xn)
−1F (xn),

zn = xn + θ(yn − xn), θ ∈ (0, 1],
H(xn, yn) =

1
θF

′(xn)
−1[F ′(zn)− F ′(xn)],

Q(xn, yn) = − 1
2H(xn, yn)[I +

1
2H(xn, yn)]

−1,
xn+1 = yn +Q(xn, yn)(yn − xn), n ≥ 0.

 (5)

One interesting feature of the iteration (5) is that of its simplicity as it avoids
the computations of the operator F ′′. To study its convergence, let F be twice
Fréchet differentiable operator in Ω and BL(Y,X) be the set of bounded linear
operators from Y into X. It is assumed that Γ0 = F ′(x0)

−1 ∈ BL(Y,X) exists
at some point x0 ∈ Ω and the following conditions hold on F

C1. ∥F ′(x0)−1∥ ≤ β,
C2. ∥F ′(x0)−1F (x0)∥ ≤ η,
C3. ∥F ′′(x)∥ ≤ M, ∀ x ∈ Ω,

C4. ∥F ′′(x)− F ′′(y)∥ ≤ ω(∥x− y∥), ∀ x, y ∈ Ω,where ω : R+ → R+ is a
continuous and non− decreasing function such that ω(0) ≥ 0,

C5. There exists a continuous and non− decreasing function h : [0, 1] → R+ ,
such that ω(tx) ≤ h(t)ω(x), with t ∈ [0, 1] and x ∈ R+.


(6)

Note that condition C5 of (6) does not involve any restriction, since, as a
consequence of ω being a non-decreasing function, there always exists a function
h such that h(t) = 1. We can consider h(t) = supx>0 ω(tx)/ω(x) to sharpen the
error bounds in a given problem. Also, condition C4 of (6) is milder than the
Lipschitz/Hölder continuity condition as this condition can be reduced to the
Lipschitz and the Hölder condition, if we consider ω(x) = Nx and ω(x) = Nxp,
p ∈ (0, 1], respectively.

For n ∈ Z+, we define three real sequences

cn = f(an)g(an, bn), an+1 = anf(an)cn, bn+1 = bnf(an)cnh(cn) (7)

where,

f(x) = (2− x)/(2− 3x), (8)

g(x, y) =
[ x2

(2− x)2
+ (K1 +K2

x

2− x
)y
]
, K1,K2 ∈ R+, (9)

and a0 = Mβη, b0 = βηω(η), are two parameters. Let r0 be the smallest positive
zero of the polynomial r(x) = 2x2−3x+1, then r0 = 0.5. The following Lemmas
establish a number of properties of the sequences {an}, {bn} and {cn}.
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Lemma 2.1. Let f and g be functions defined by (8) and (9) respectively, then
for x ∈ (0, r0],
(i) f is increasing and f(x) > 1,
(ii) g is increasing in both arguments for y > 0,
(iii) f(δx) < f(x) and g(δx, δp+1y) < δp+1g(x, y), for δ ∈ (0, 1) and p ∈ (0, 1].

Proof. The proof is simple and can be omitted. �

Lemma 2.2. Let f and g be functions defined by equations (8) and (9) respec-
tively and h(t) ≤ 1,∀t ∈ [0, 1]. Let us define a function

Φ(x) =
4(2x2 − 3x+ 1)

(K1(2− x) +K2x)(2− x)
(10)

where K1,K2 are positive real numbers. If 0 < a0 ≤ r0 and 0 ≤ b0 ≤ Φ(a0),
then
(i) cnf(an) ≤ 1,
(ii) {an}, {bn}, {cn} are decreasing and an < 1, cn < 1 ∀n.

Proof. Now from definitions of f and g, we have

cnf(an) = f(an)
2g(an, bn) ≤ 1

iff ( 2− an
2− 3an

)2( a2n
(2− an)2

+ (K1 +K2
an

2− an
)bn

)
≤ 1,

or

bn ≤ 4(2a2n − 3an + 1)

(K1(2− an) +K2an)(2− an)
= Φ(an).

We will use induction to prove the Lemma. For 0 < a0 ≤ r0, 0 ≤ b0 ≤ Φ(a0),
we can easily conclude that c0f(a0) ≤ 1. Thus, from equation (7), we obtain

a1 = a0f(a0)c0 ≤ a0 < 1.

As f(x) > 1 in (0, r0] and h(t) ≤ 1, ∀t ∈ [0, 1], we have

b1 = b0f(a0)c0h(c0) ≤ b0f(a0)c0 ≤ b0

and hence

c1 = f(a1)g(a1, b1) ≤ f(a0)g(a0, b0) = c0 < c0f(a0) ≤ 1.

Let our assertion hold for n = k. Proceeding similarly, one can easily prove that
it holds for n = k + 1. Thus, by induction hypothesis Lemma 2.2 is proved. �

Lemma 2.3. Let us suppose a0 ∈ (0, r0), 0 < b0 < Φ(a0) and h(t) ≤ tp ≤
1, ∀t ∈ [0, 1] and p ∈ (0, 1]. Define γ = a1/a0, then for n ≥ 1 we have,

(i) an ≤ γ(2+p)n−1

an−1 ≤ γ((2+p)n−1)/(1+p)a0, strictly hold for n ≥ 2,

(ii) bn <
(
γ(2+p)n−1

)1+p

bn−1 < γ(2+p)n−1b0,

(iii) cn < γ(2+p)n/f(a0).
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Proof. We will prove (i) and (ii) by induction. Since a1 = γa0 and a1 < a0 from
Lemma 2.2(i), we get γ < 1. By Lemma 2.1(i) and Lemma 2.2(i) we get

b1 = b0f(a0)c0h(c0) ≤ b0(f(a0)
2g(a0, b0))(f(a0)g(a0, b0))

p =
(a1

a0

)(1+p)

b0 = γ(1+p)b0.

Suppose (i) and (ii) hold for n = k, then

ak+1 = akf(ak)
2g(ak, bk)

< γ(2+p)k−1

ak−1f(ak−1)
2g
(
γ(2+p)k−1

ak−1,
(
γ(2+p)k−1

)1+p

bk−1

)
< γ(2+p)k−1

ak−1f(ak−1)
2
(
γ(2+p)k−1

)1+p

g(ak−1, bk−1) = γ(2+p)kak.

Also, from f(x) > 1 in (0, r0), we get

bk+1 = bkf(ak)ckh(ck) ≤ bk(f(ak)
2g(ak, bk))(f(ak)g(ak, bk))

p

= bk(f(ak)
2g(ak, bk))

1+p = bk

(ak+1

ak

)1+p

<
(
γ(2+p)k

)1+p

bk.

Hence,

ak+1 < γ(2+p)kak < γ(2+p)kγ(2+p)k−1

· · · γ(2+p)0a0 = γ((2+p)k+1−1)/(1+p)a0.

and

bk+1 <
(
γ(2+p)k

)1+p

bk <
(
γ(2+p)k

)1+p

· · ·
(
γ(2+p)0

)1+p

b0 = γ(2+p)k+1−1b0.

Thus, (i) and (ii) hold by induction. Condition (iii) follows from

cn = f(an)g(an, bn) ≤ f(γ((2+p)n−1)/(1+p)a0)g(γ
((2+p)n−1)/(1+p)a0, γ

(2+p)n−1b0)

< γ(2+p)n f(a0)g(a0, b0)

γ
= γ(2+p)n/f(a0)

as γ = a1/a0 = f(a0)
2g(a0, b0). �

3. A Family of Recurrence Relations

In this section, a family of recurrence relations are derived for the method
(5) under the assumptions of Section 2. Since, existence of Γ0 = F ′(x0)

−1 gives
existence of y0, we get M∥Γ0∥∥y0 − x0∥ ≤ Mβη = a0. Also,

∥1
2
H(x0, y0)∥ ≤ 1

2
M∥Γ0∥∥y0 − x0∥ ≤ a0

2
< 1.

Hence,
(
I + 1

2H(x0, y0)
)−1

exists by Banach theorem [15, p.155], and∥∥∥(I + 1

2
H(x0, y0)

)−1∥∥∥ ≤ 1

1− a0/2
=

2

2− a0
.

Thus, ∥Q(x0, y0)∥ ≤ a0/(2− a0). Hence,

∥x1 − y0∥ = ∥Q(x0, y0)(y0 − x0)∥ ≤ a0
2− a0

∥y0 − x0∥
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and

∥x1 − x0∥ ≤ ∥x1 − y0∥+ ∥y0 − x0∥ ≤ 2

2− a0
∥y0 − x0∥.

Also,

∥Γ0∥∥y0 − x0∥ω(∥y0 − x0∥) ≤ βηω(η) = b0.

The following inequalities can now be proved for n ≥ 1:

(I) ∥Γn∥ = ∥F ′(xn)
−1∥ ≤ f(an−1)∥Γn−1∥,

(II) ∥yn − xn∥ = ∥ΓnF (xn)∥ ≤ cn−1∥yn−1 − xn−1∥,
(III) M∥Γn∥∥yn − xn∥ ≤ an,
(IV ) ∥xn+1 − yn∥ ≤ an

2−an
∥yn − xn∥,

(V ) ∥xn+1 − xn∥ ≤ 2
2−an

∥yn − xn∥,
(V I) ∥Γn∥∥yn − xn∥ω(∥yn − xn∥) ≤ bn.


(11)

Now, induction can be used to prove conditions (I)−(V I). Assume that x1 ∈ Ω.
We now have

∥I − Γ0F
′(x1)∥ ≤ M∥Γ0∥∥x0 − x1∥ ≤ 2

2− a0
M∥Γ0∥∥y0 − x0∥ ≤ 2a0

2− a0
< 1.

Hence, by Banach theorem, Γ1 = F ′(x1)
−1 exists and

∥Γ1∥ ≤ ∥Γ0∥
1−M∥Γ0∥∥x0 − x1∥

≤ 2− a0
2− 3a0

∥Γ0∥ = f(a0)∥Γ0∥. (12)

Thus, y1 exists as Γ1 exists. Note that xn+1 − yn = Q(xn, yn)(yn − xn) and
applying Taylor’s method, we can easily obtain

F (xn+1) =
1
2

∫ 1

0
F ′′(xn + t(yn − xn))(yn − xn)Q(xn, yn)(yn − xn)dt

+
∫ 1

0
[F ′′(xn + t(yn − xn))− F ′′(xn)](1− t)(yn − xn)

2dt

+
∫ 1

0
F ′′(yn + t(xn+1 − yn))(1− t)(Q(xn, yn)(yn − xn))

2dt

+1
2

∫ 1

0
[F ′′(xn)− F ′′(xn + θt(yn − xn))](yn − xn)

2dt

−1
2

∫ 1

0
[F ′′(xn + θt(yn − xn))− F ′′(xn + t(yn − xn))]

×(yn − xn)Q(xn, yn)(yn − xn)dt.

Thus, we have

∥F (x1)∥ ≤ M

2
∥y0 − x0∥∥x1 − y0∥+

∫ 1

0

ω(t∥y0 − x0∥)(1− t)∥y0 − x0∥2dt

+
M

2
∥x1 − y0∥2 +

1

2

∫ 1

0

ω(θt∥y0 − x0∥)∥y0 − x0∥2dt

+
1

2

∫ 1

0

ω(t(1− θ)∥y0 − x0∥)∥y0 − x0∥∥x1 − y0∥dt

≤ M

2
∥y0 − x0∥∥x1 − y0∥+

∫ 1

0

h(t)(1− t)dtω(∥y0 − x0∥)∥y0 − x0∥2

+
M

2
∥x1 − y0∥2 +

1

2

∫ 1

0

h(θt)dtω(∥y0 − x0∥)∥y0 − x0∥2
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+
1

2

∫ 1

0

h(t(1− θ))ω(∥y0 − x0∥)∥y0 − x0∥∥x1 − y0∥dt

≤ M
a0

(2− a0)2
∥y0 − x0∥2 +

(
K1 +

K2a0
2− a0

)
ω(∥y0 − x0∥)∥y0 − x0∥2,

where K1 =
∫ 1

0
h(t)(1− t)dt+ 1

2

∫ 1

0
h(θt)dt, K2 = 1

2

∫ 1

0
h(t(1− θ))dt.

This gives

∥Γ1F (x1)∥ ≤ ∥Γ1∥∥F (x1)∥

≤ f(a0)∥Γ0∥
[
M

a0
(2− a0)2

∥y0 − x0∥2

+
(
K1 +

K2a0
2− a0

)
ω(∥y0 − x0∥)∥y0 − x0∥2

]
≤ f(a0)

[ a20
(2− a0)2

+
(
K1 +

K2a0
2− a0

)
b0

]
∥y0 − x0∥

= f(a0)g(a0, b0)∥y0 − x0∥ = c0∥y0 − x0∥. (13)

Also,

M∥Γ1∥∥y1 − x1∥ ≤ M∥Γ0∥f(a0)c0∥y0 − x0∥ ≤ a0f(a0)c0 = a1. (14)

Thus,

∥1
2
H(x1, y1)∥ ≤ 1

2
M∥Γ1∥∥y1 − x1∥ ≤ a1

2
< 1.

Hence,
(
I + 1

2H(x1, y1)
)−1

exists by Banach theorem, and∥∥∥(I + 1

2
H(x1, y1)

)−1∥∥∥ ≤ 1

1− a1/2
=

2

2− a1
.

Thus, ∥Q(x1, y1)∥ ≤ a1/(2− a1) and hence,

∥x2 − y1∥ = ∥Q(x1, y1)(y1 − x1)∥ ≤ a1
2− a1

∥y1 − x1∥ (15)

and

∥x2 − x1∥ = ∥x2 − y1∥+ ∥y1 − x1∥ =
2

2− a1
∥y1 − x1∥. (16)

Again,

∥Γ1∥∥y1 − x1∥ω(∥y1 − x1∥) ≤ ∥Γ0∥f(a0)c0∥y0 − x0∥ω(c0∥y0 − x0∥)
≤ f(a0)c0h(c0)∥Γ0∥∥y0 − x0∥ω(∥y0 − x0∥)
≤ b0f(a0)c0h(c0) = b1. (17)

Hence, for n = 1, the conditions (I) − (V I) follow from equations (12)-(17)
respectively. Let these statements hold for n = k and xk ∈ Ω. Proceeding
similarly as above it can be easily proved that these conditions also hold for
n = k + 1. Hence, by induction it holds for all n.
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4. Convergence Analysis

The following theorem will establish the convergence of the sequence {xn}
and give a priori error bounds for it. Let us denote γ = a1/a0 and ∆ = 1/f(a0),
R = 2

(2−a0)(1−γ∆) .

Theorem 4.1. Let 0 < a0 ≤ r0 and 0 ≤ b0 ≤ Φ(a0) hold, where r0 is the
smallest positive zero of the polynomial r(x) = 2x2 − 3x + 1 and Φ(x) be the
function defined by equation (10). Also let h(t) ≤ tp ≤ 1, ∀t ∈ [0, 1] and p ∈
(0, 1], where h(t) is defined by C5 of (6). Under the assumption given in (6) on
F and B̄(x0, Rη) ⊆ Ω, the method (5) starting from x0 generates a sequence {xn}
converging to the root x∗ of (1) with R-order at least p+ 2. In this case xn, yn
and x∗ lie in B̄(x0, Rη) and the solution x∗ is unique in B(x0, 2/(Mβ)−Rη)∩Ω.
Furthermore, the error bounds on x∗ is given by

∥x∗ − xn∥ ≤ 2γ((2+p)n−1)/(1+p)

(2− γ((2+p)n−1)/(1+p)a0)

∆n

(1− γ(2+p)n∆)
η. (18)

Proof. It is sufficient to show that {xn} is a Cauchy sequence in order to establish
the convergence of {xn}. Now from (11), we have

∥yn − xn∥ ≤ cn−1∥yn−1 − xn−1∥ ≤ · · · ≤
( n−1∏

j=0

cj

)
∥y0 − x0∥ ≤

( n−1∏
j=0

cj

)
η (19)

and

∥xm+n − xm∥ ≤ ∥xm+n − xm+n−1∥+ · · ·+ ∥xm+1 − xm∥

≤ 2

2− am+n−1
∥ym+n−1 − xm+n−1∥+ · · ·+ 2

2− am
∥ym − xm∥

≤ 2

2− am+n−1

(m+n−2∏
j=0

cj

)
η + · · ·+ 2

2− am

(m−1∏
j=0

cj

)
η

≤ 2

2− am

[m+n−2∏
j=0

cj + · · ·+
m−1∏
j=0

cj

]
η. (20)

Now, for a0 = r0, we have b0 = Φ(a0) = 0. Hence, from Lemma 2.2, we obtain
c0f(a0) = 1, an = an−1 = · · · = a0, cn = cn−1 = · · · = c0 and bn = bn−1 · · · =
b0 = 0. Thus,

∥yn − xn∥ ≤ cn0η = ∆nη

and

∥xm+n−xm∥ ≤ 2

2− a0

[
∆m+n−1+· · ·+∆m

]
η =

2∆m

2− a0

(1−∆n

1−∆

)
η. (21)

Hence, if we take m = 0, we have

∥xn − x0∥ ≤ 2

2− a0

(1−∆n

1−∆

)
η. (22)
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Thus, xn ∈ B̄(x0, Rη). Similarly, we can prove that yn ∈ B̄(x0, Rη). As ∆ < 1,
from the above equation (21), we can conclude that {xn} is a Cauchy sequence.
Let 0 < a0 < r0 and 0 < b0 < Φ(a0). Now, from (19) and Lemma 2.3(iii), for
n ≥ 1, we have

∥yn − xn∥ ≤
( n−1∏

j=0

cj

)
η <

n−1∏
j=0

(
γ(2+p)j∆

)
η = γ((2+p)n−1)/(1+p)∆nη.

Hence, from (20), we obtain

∥xm+n − xm∥ ≤ 2

2− am

[(m+n−2∏
j=0

cj

)
η + · · ·+

(m−1∏
j=0

cj

)
η
]

<
2

2− am

[
γ((2+p)m+n−1−1)/(1+p)∆m+n−1 + · · ·

+γ((2+p)m−1)/(1+p)∆m
]
η

=
2∆m

2− am

[
γ((2+p)m+n−1−1)/(1+p)∆n−1 + · · ·

+γ((2+p)m−1)/(1+p)
]
η

<
2γ((2+p)m−1)/(1+p)∆m

2− γ((2+p)m−1)/(1+p)a0

[
γ((2+p)m[(2+p)n−1−1])/(1+p)∆n−1

+γ((2+p)m[(2+p)n−2−1])/(1+p)∆n−2 + · · ·

+γ((2+p)m[(2+p)−1])/(1+p)∆+ 1
]
η.

By Bernoulli’s inequality, for every real number x > −1 and every integer k ≥ 0,
we have (1 + x)k − 1 ≥ kx. Thus, we get

∥xm+n − xm∥ <
2γ((2+p)m−1)/(1+p)∆m

(2− γ((2+p)m−1)/(1+p)a0)

1− γ(2+p)mn∆n

(1− γ(2+p)m∆)
η. (23)

Thus, for m = 0, we get

∥xn − x0∥ <
2

2− a0

1− γn∆n

1− γ∆
η < Rη. (24)

Hence, xn ∈ B(x0, Rη). Also, yn ∈ B(x0, Rη), is evident from the following
result.

∥yn+1 − x0∥ ≤ ∥yn+1 − xn+1∥+ ∥xn+1 − xn∥+ · · ·+ ∥x1 − x0∥

≤ ∥yn+1 − xn+1∥+
2

2− an
∥yn − xn∥+ · · ·+ 2

2− a0
∥y0 − x0∥

<
2

2− an+1
∥yn+1 − xn+1∥+ · · ·+ 2

2− a0
∥y0 − x0∥

< · · · < 2

2− a0

1− γn+2∆n+2

1− γ∆
η < Rη.
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Taking limit n → ∞ as in (22) and (24), we get x∗ ∈ B̄(x0, Rη). Now, we
have to show that x∗ is a solution of F (x) = 0. For this we have ∥F (xn)∥ ≤
∥F ′(xn)∥∥ΓnF (xn)∥ and the sequence {∥F ′(xn)∥} is bounded as

∥F ′(xn)∥ ≤ ∥F ′(x0)∥+M∥xn − x0∥ < ∥F ′(x0)∥+MRη.

Now, taking limit n → ∞, we get F (x∗) = 0 as F is continuous. To show the
uniqueness of the root x∗, let y∗ be another root of (1) in B(x0, 2/(Mβ)−Rη)∩Ω.
But, we have

0 = F (y∗)− F (x∗) =

∫ 1

0

F ′(x∗ + t(y∗ − x∗))dt(y∗ − x∗).

Thus, we have y∗ = x∗, if the operator P =
∫ 1

0
F ′(x∗+t(y∗−x∗))dt is invertible.

From

∥I − Γ0P∥ = ∥Γ0(F
′(x0)− P )∥ = ∥Γ0

∫ 1

0

[F ′(x∗ + t(y∗ − x∗))− F ′(x0)]dt∥

≤ Mβ

∫ 1

0

∥x∗ + t(y∗ − x∗)− x0∥dt

≤ Mβ

∫ 1

0

((1− t)∥x∗ − x0∥+ t∥y∗ − x0∥)dt

<
Mβ

2

(
Rη +

2

Mβ
−Rη

)
= 1,

and by Banach theorem, P is invertible. �

Remark 4.1. Note that if ω(x) = Nxp, N ≥ 0, p ∈ (0, 1], then ω(tx) ≤ tpω(x)
and F ′′ is (N, p)-Hölder continuous in Ω. So, the R-order of convergence is at
least 2 + p.

Remark 4.2. Also, note that if ω(x) = Nx,N ≥ 0 and p = 1 then ω(tx) ≤
tω(x) and F ′′ is N -Lipschitz continuous in Ω. So, the R-order of convergence is
at least 3.

5. Numerical Examples

In this section, two numerical examples are worked out for demonstrating the
efficacy of our approach.

Example 1. Let X = C[a, b] be the space of continuous functions on [a, b]
and consider the problem of finding the solutions of nonlinear integral equations
F (x) = 0 of mixed type [9], given by

F (x)(s) = x(s)− f(s)− λ

∫ b

a

G(s, t)[x(t)2+p + x(t)3]dt, p ∈ (0, 1], λ ∈ R (25)

where, f, x are continuous functions such that f(s) > 0, s ∈ [a, b], and the
Kernel G is continuous and nonnegative in [a, b]× [a, b].
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Solution- For the solution of the problem, we have taken the norm as sup-
norm and G(s, t) as the Green’s function

G(s, t) =

{
(b− s)(t− a)/(b− a), t ≤ s,
(s− a)(b− t)/(b− a), s ≤ t,

Now, the first and second derivatives of F can easily be obtained and given by

F ′(x)u(s) = u(s)− λ

∫ b

a

G(s, t)[(2 + p)x(t)1+p + 3x(t)2]u(t)dt, u ∈ Ω,

F ′′(x)(uv)(s) = −λ

∫ b

a

G(s, t)[(1 + p)(2 + p)x(t)p + 6x(t)](uv)(t)dt, u, v ∈ Ω.

For p ∈ (0, 1), we must note here that the second derivative F ′′ does not satisfy
the Lipschitz/Hölder continuity condition, as

∥F ′′(x) − F ′′(y)∥

=
∥∥∥λ ∫ b

a

G(s, t)[(1 + p)(2 + p)(x(t)p − y(t)p) + 6(x(t)− y(t))]dt
∥∥∥

≤ |λ| max
s∈[a,b]

∣∣∣ ∫ b

a

G(s, t)dt
∣∣∣[(1 + p)(2 + p)∥x(t)p − y(t)p∥+ 6∥x(t)− y(t)∥

]
≤ |λ|∥l∥[(1 + p)(2 + p)∥x− y∥p + 6∥x− y∥], ∀x, y ∈ Ω,

where

∥l∥ = max
s∈[a,b]

∣∣∣ ∫ b

a

G(s, t)dt
∣∣∣.

Thus, convergence of our method under Lipschitz/Hölder continuity condition
on F ′′ can not be tested for this problem. However, it satisfies the ω- continuity
condition given by

∥F ′′(x)− F ′′(y)∥ ≤ ω(∥x− y∥), ∀x, y ∈ Ω,

where, ω(x) = |λ|∥l∥[(1 + p)(2 + p)xp + 6x]. This leads to ω(tx) ≤ tpω(x), for

p ∈ (0, 1] and t ∈ [0, 1]. Thus, h(t) = tp, and hence K1 =
∫ 1

0
h(t)(1 − t)dt +

1
2

∫ 1

0
h(θt)dt = 1

(1+p)(2+p) +
θp

2(1+p) and K2 = 1
2

∫ 1

0
h(t(1− θ))dt = (1−θ)p

2(1+p) .

It is easy to compute

∥F (x0)∥ ≤ ∥x0 − f∥+ |λ|∥l∥[∥x0∥2+p + ∥x0∥3]
and

∥F ′′(x)∥ ≤ |λ|∥l∥
[
(1 + p)(2 + p)∥x∥p + 6∥x∥

]
.

This gives M = |λ|∥l∥
[
(1 + p)(2 + p)∥x∥p + 6∥x∥

]
. Also,

∥I − F ′(x0)∥ ≤ |λ|∥l∥[(2 + p)∥x0∥1+p + 3∥x0∥2]
and if |λ|∥l∥[(2 + p)∥x0∥1+p + 3∥x0∥2] < 1, then by Banach theorem [15], we
obtain

∥Γ0∥ = ∥F ′(x0)
−1∥ ≤ 1

1− |λ|∥l∥[(2 + p)∥x0∥1+p + 3∥x0∥2]
= β
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and

∥Γ0F (x0)∥ ≤ ∥x0 − f∥+ |λ|∥l∥[∥x0∥2+p + ∥x0∥3]
1− |λ|∥l∥[(2 + p)∥x0∥1+p + 3∥x0∥2]

= η.

For a = 0 and b = 1, we get

∥l∥ = max
s∈[0,1]

∣∣∣ ∫ 1

0

G(s, t)dt
∣∣∣ = 1/8.

For λ = 1/3, p = 1/2, f(s) = 1, θ = 0.5 and initial point x0 = x0(s) = 1 in [0, 1],
we get ∥Γ0∥ ≤ β = 1.2973, ∥Γ0F (x0)∥ ≤ η = 0.108108, ω(η) = 0.0784017 and
b0 = βηω(η) = 0.0109957. Now we look for a domain in the form of Ω = B(x0, S)
such that

Ω = B(x0, S) ⊆ C[0, 1] = X.

Thus, we get M = M(S) = 0.15625Sp + 0.25S and a0 = a0(S) = M(S)βη =
0.0219138Sp+0.03506208S. To calculate S, from the condition of theorem 4.1 it
is necessary that B̄(x0, Rη) ⊆ Ω. For this it is sufficient to check S−(R(S)η+1) >
0 and Φ(a0(S)) − b0 > 0. Hence it is necessary that S ∈ (1.11237, 11.9938)
as is evident from fig. 1. In fact fig. 1 gives a sufficient condition on the
parameter S such that S − (R(S)η + 1) > 0 and Φ(a0(S)) − b0 > 0. Also
a0(S) < r0 = 0.5, if and only if S < 12.0875. Hence if we choose S = 8,
then we have Ω = B(1, 8), M = 2.44194, a0 = 0.342478 and b0 = 0.0109957 <
0.5472867 = Φ(0.342478). Thus the conditions of the theorem 4.1 are satisfied.
Hence a solution of equation (25) exists in the ball ¯B(1, 0.142266) ⊆ Ω and is
unique in the ball B(1, 0.489062)∩Ω. On the other hand if we consider the work

of Ezquerro and Hernández[7], A =
∫ 1

0
(1− t)tpdt = 1

(1+p)(2+p) . Here we denote

the function 2(x2−3x+1)
A(2−x) as Ψ(x). Now in order to calculate S, from the condition

of theorem 2.6 of that paper, it is also necessary that B̄(x0, Rη) ⊆ Ω. For this
it is sufficient to check S − (R(S)η + 1) > 0 and Ψ(a0(S))− b0 > 0. Hence it is
necessary that S ∈ (1.11206, 8.98979) as is evident from fig. 2. The definitions
of R also comes from of that paper. As described above, fig. 2 gives a domain
of the paprameter S in which S − (R(S)η + 1) > 0 and Ψ(a0(S))− b0 > 0.

Also a0(S) < 3−
√
5

2 , if and only if S < 9.0172. Hence if we choose S = 8,
then we have Ω = B(1, 8), M = 2.44194, a0 = 0.342478 and b0 = 0.0109957 <
0.4065847 = Ψ(0.342478). Thus the conditions of the theorem 2.6 are satisfied.
Hence a solution of equation (25) exists in the ball ¯B(1, 0.141602) ⊆ Ω and is
unique in the ball B(1, 0.489726)∩Ω. From this we conclude that our convergence
analysis gives better existence ball than that of Ezquerro and Hernández.

Example 2. Let us consider a integral equation given in [13]

F (x)(s) = x(s)− s+
1

2

∫ 1

0

s cos(x(t))dt, (26)

where x is a continuous function and F : Ω ⊆ C[0, 1] → C[0, 1].
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Figure 1. Domain for the parameter S for Φ(a0(S))− b0 > 0.

Solution- Here we used sup norm in C[0, 1]. Now it is easy to find the first
and second derivatives of F as given by

F ′(x)u(s) = u(s)− s

2

∫ 1

0

sin(x(t))u(t)dt,

F ′′(x)(uv)(s) = −s

2

∫ 1

0

cos(x(t))u(t)v(t)dt.

Note that one can easily prove that F ′′ satisfy the Lipschitz continuity condition
as

∥F ′′(x)− F ′′(y)∥ = ∥s
2

∫ 1

0

[cos(x(t))− cos(y(t))]dt∥ ≤ 1

2
∥x− y∥.
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Figure 2. Domain for the parameter S for Ψ(a0(S))− b0 > 0.

Hence ω(x) = Nx, where N = 1
2 . This leads to ω(tx) = tω(x), for t ∈ [0, 1].

Thus, h(t) = t, and hence K1 =
∫ 1

0
h(t)(1 − t)dt + 1

2

∫ 1

0
h(θt)dt = 1

6 + θ
4 and

K2 = 1
2

∫ 1

0
h(t(1− θ))dt = 1−θ

4 .

Also we can easily conclude that ∥F ′′(x)∥ ≤ 1
2 = M .

If we choose x0 = x0(s) = s, it is easy to find

∥Γ0∥ ≤ 3− sin 1

2− sin 1 + cos 1
= β = 1.2705964...,

∥Γ0F (x0)∥ ≤ sin 1

2− sin 1 + cos 1
= η = 0.4953234...,
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Figure 3. θ-domain for Φ(a0)− b0

for details see [13]. Hence a0 = Mβη = 0.314678... < r0 = 0.5 and b0 =
βηω(η) = 0.155867... ≤ Φ(a0), for all θ ∈ (0, 1], see figure 3. It is to be mentioned
here that the figure 3 gives a domain on θ such that Φ(a0)− b0 is positive. Thus
the conditions of the theorem 4.1 are satisfied. Hence a solution of equation (26)
exists in the ball ¯B(x0, 0.674825) ⊆ Ω and is unique in the ball B(x0, 2.4733)∩Ω.

On the other hand for the case of Ezquerro and Hernández[7], a0 = Mβη =

0.314678... < 3−
√
5

2 and b0 = βηω(η) = 0.155867... ≤ 2(a2
0−3a0+1)
A(2−a0)

= 1.103561,

where A =
∫ 1

0
(1 − t)h(t)dt = 1/6. Thus assumptions of Theorem 2.6 and

Theorem 2.8 are satisfied. Hence a solution of equation (26) exists in the ball
¯B(x0, 0.656655) ⊆ Ω and unique in the ball B(x0, 2.49147) ∩ Ω.

From this we conclude that our convergence analysis gives a better existence
ball than that of Ezquerro and Hernández.

6. Conclusions

The semilocal convergence of a third order iterative method used for solving
nonlinear operator equations in Banach spaces is established by using recur-
rence relations under the assumption that the second Fréchet derivative of the
involved operator satisfies the ω-continuity condition. This ω−continuous con-
dition is milder than the usual Lipschitz/Hölder continuity condition. A family
of recurrence relations based on two constants depending on the F is derived.
An existence-uniqueness theorem is established to show that the R-order con-
vergence of the method is (2+p), where p ∈ (0, 1]. A priori error bounds for the
method is also derived. Two numerical examples are worked out to demonstrate
the efficacy of our approach. It is observed that our results are better than those
obtained by Ezquerro and Hernández[7].
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