JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 10, NO. 1, MARCH 2008

Upper Bounds for the Performance of Turbo-Like Codes
and Low Density Parity Check Codes

Kyuhyuk Chung and Jun Heo

Abstract: Researchers have investigated many upper bound tech-
niques applicable to error probabilities on the maximum likelihood
(ML) decoding performance of turbo-like codes and low density
parity check (LDPC) codes in recent years for a long codeword
block size. This is because it is trivial for a short codeword block
size. Previous research efforts, such as the simple bound tech-
nique [20] recently proposed, developed upper bounds for LDPC
codes and turbo-like codes using ensemble codes or the uniformly
interleaved assumption. This assumption bounds the performance
averaged over all ensemble codes or all interleavers. Another pre-
vious research effort [21] obtained the upper bound of turbo-like
code with a particular interleaver using a truncated union bound
which requires information of the minimum Hamming distance
and the number of codewords with the minimum Hamming dis-
tance. However, it gives the reliable bound only in the region of
the error floor where the minimum Hamming distance is dominant,
i.e., in the region of high signal-to-noise ratios. Therefore, currently
an upper bound on ML decoding performance for turbo-like code
with a particular interleaver and LDPC code with a particular par-
ity check matrix cannot be calculated because of heavy complexity
so that only average bounds for ensemble codes can be obtained us-
ing a uniform interleaver assumption. In this paper, we propose a
new bound technique on ML decoding performance for turbo-like
code with a particular interleaver and LDPC code with a partic-
ular parity check matrix using ML estimated weight distributions
and we also show that the practical iterative decoding performance
is approximately suboptimal in ML sense because the simulation
performance of iterative decoding is worse than the proposed up-
per bound and no wonder, even worse than ML decoding perfor-
mance. In order to show this point, we compare the simulation
results with the proposed upper bound and previous bounds. The
proposed bound technique is based on the simple bound with an
approximate weight distribution including several exact smallest
distance terms, not with the ensemble distribution or the uniform
interleaver assumption. This technique also shows a tighter upper
bound than any other previous bound techniques for turbo-like
code with a particular interleaver and LDPC code with a partic-
ular parity check matrix.

Index Terms: Low-density parity-check (LDPC) codes, maximmum
likelihood (ML) decoding, turbo-like codes, weight distributions.
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I. INTRODUCTION

Iterative decoding [1]-[6] for low-density parity-check
(LDPC) codes and concatenated codes with interleavers repre-
sents a great advancement in communications theory because of
their excellent performance. Parallel concatenated convolutional
codes (PCCCs), also called turbo-like codes, and serial con-
catenated convolutional codes (SCCCs) with interleavers, intro-
duced in [3], [4], [7]-[9], consist of simple binary convolutional
codes connected through an interleaver in a parallel or in a se-
rial manner. On the other hand, LDPC codes [1], [2] are very
well liked because of their excellent performance and advantage
for efficient parallel hardware implementation. Numerous sim-
ulations and bounds have demonstrated their remarkable perfor-
mance [10]-{18].

In [19], the transfer function bounding techniques were ap-
plied to obtain the upper bounds on the bit-error probabilities
and the word-error probabilities for maximum likelihood (ML)
decoding of turbo codes. Since the transfer function bound is
developed as a random coding bound with the uniformly inter-
leaved assumption, it cannot be used to bound the performance
of the turbo code with a particular interleaver and that of the
LDPC code with a particular parity check matrix.

Moreover, the union bound cannot predict performance above
the cutoff rate. There is a great demand to have bounds on per-
formance that are useful for rates above the cutoff rate. Recently
a proposed simple bound technique [20] showed a tight upper
bound of repeat accumulate codes and LDPC codes by using an
ensemble input-output weight distribution based on a uniform
interleaver assumption above the cutoff rate. A truncated union
bound [21] has been proposed in order to obtain the upper bound
of the turbo-like code with a particular interleaver. This trun-
cated union bound [21] uses information of the minimum Ham-
ming distance and the number of codewords with the minimum
Hamming distance from the particular code structures. How-
ever, it gives the reliable bound only in the region of the error
floor where the minimum Hamming distance is dominant, i.e, in
the region of high signal-to-noise ratios (SNRs).

In this paper, we propose a new bound technique for turbo-
like code with a particular interleaver and LDPC code with
a particular parity check matrix. The proposed bound tech-
nique is based on the simple bound with an approximate weight
distribution including several exact smallest non-zero distance
terms [21]-[23], not with the ensemble distribution or the uni-
form interleaver assumption. This bound can be used to predict
ML decoding performance of turbo-like code with a particular
interleaver and LDPC code with a particular parity check ma-
trix without Monte-Carlo simulation suboptimal iterative decod-
ing [1], [3], which is currently worse than the proposed upper
bound and no wonder, even worse than ML decoding perfor-
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mance. The remainder of this paper is organized as follows. In
Section II, we describe previous bounding techniques and com-
pare transfer function bounds, simple bounds, and simulation
results. In Section III, we present upper bounds for turbo-like
code with a particular interleaver and LDPC code with a partic-
ular parity check matrix. In Section IV, we conclude the paper.

II. A REVIEW AND COMPARISON OF PREVIOUS
BOUNDS

A. Transfer Function Bounds

For an ML decoder, a union bound on the probability of word
error and bit error over an additive white Gaussian noise chan-
nel requires an input-output weight distribution. For the overall
(N, K) code C', where N is the length of a codeword, K is the
length of the information bits, and the code rate is r £ K /N,
A, 4 denotes the number of codewords for an input sequence
weight w and output codeword weight d. Then, the conditional
probability of producing a codeword of weight d, given an input
sequence of weight w, is

_ Aw,d . Aw,d
Zd' Aw,d’ (K) .

w

p(dw) ey
where (+) is the number of combinations of size k from size 7.
The conditional probability distribution p(djw) for turbo codes
is obtained by using the uniformly interleaved assumption [19].

The conditional probability that an ML decoder will choose
a codeword of total weight d to the all-zero codeword is
Q{(/2dEs/Np). Q(-) is the complementary unit variance
Gaussian distribution function. E; is the energy per signal and
Ny is the one-sided noise spectral density and in turn E, /Ny is
the channel symbol SNR. Then, the bit error probability P is

upper bounded [19]:
2dFE;
—_— . @2
w)l o

P < j; (0) 3 p(dho) {Q <

The divergence properties of the transfer function bounds for
turbo codes are observed above the cutoff rate [19] which is
shown in Fig. 1.

B. A Simple Tight Bound

The performance of turbo-like codes is close to Shannon’s
channel capacity limit for moderate to large block sizes, so there
is a need for bounds on performance that are useful for rates
above the cutoff rate. In [20] such a simple bound on the proba-
bility of decoding error for block codes above the cutoff rate is
derived in a closed form. This bound is simple because it does
not require any integration or optimization in its final version.
Consider a linear binary (N, K) block code C, where N is the
codeword length and K the information frame length.

For a given code, d is the Hamming weight of a codeword.
The upper bound [20] on the bit error rate (BER) with ML code-
word decoding is given by

N-K+1
R Y min{e_NE(c’d), N9 (\/ﬁ)} 3)
d=dmin
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Fig. 1. Upper bounds with uniform interleavers and simulations with
various interleavers for turbo codes (r = 1/3, K = 1, 000).

where d,,,;,, is the minimum distance of the code and

L[l — 260(8)f (¢, )] + T5E%,
E(c,d) £ ifeo(d) << Graeg. @
—g(8) + éc, otherwise

where § £ d/N, ¢ £ 7(Ey/No) with E}, being the energy per
information bit, and

A _ 1—
co(d) = (1 —-e 29(5)) —2—5-6, (%)
f(c,&)é,/?((:éj+20+c2—c-l, ©6)
a1 w
g(0) = N In {Zw: RAw,d} (N

where A, 4 is the input-output weight distribution defined in
Section 1I-A. For the codeword error rate, (7) is changed differ-
ently as in [20]. In order to apply this simple bound to a partic-
ular code, the input-output weight distribution A, ¢ should be
obtained for that particular code, which is usually very compli-
cated.

C. Comparison of Transfer Function Bounds, Simple Bounds,
and Simulation Results

Currently, an upper bound on ML decoding performance for
turbo-like code with a particular interleaver and LDPC code
with a particular parity check matrix cannot be calculated be-
cause of heavy complexity so that only average bounds for en-
semble codes can be obtained using a uniform interleaver as-
sumption. Fig. 1 shows comparisons of the average bounds (a
transfer function bound and a simple bound) with the practical
iterative decoding performance curves for turbo codes with var-
ious interleavers. The practical iterative decoding performance
for turbo codes is known as suboptimal in ML seunse. The curves
for upper bounds and simulations on the waterfall region, not on
the error floor region, approach the channel capacity and cutoff
rate which are below the channel capacity as the performance of
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the code improves. It is meaningful to compare the upper bounds
and simulations to the ultimate bound, i.e., the channel capac-
ity because turbo codes are known to be a near channel-capacity
achieving code. The turbo code uses constituent convolutional
codes with the generator polynomial (1 + D?)/(1 + D + D?).
The rate of the turbo code is 1/3. The three simulation re-
sults are obtained from three different interleavers with length
K = 1,000. The first is an optimized spread interleaver [24],
having the best performance among the three interleavers. The
second is a block interleaver which reads bits in a 20 by 50 rec-
tangular array row-wise and reads out column-wise. The third is
a block interleaver with 200 by 5 rectangular array. The transfer
function bound and the simple bound use the uniform interleaver
with which only a single bound is obtained for the three differ-
ent codes, i.e., one single transfer bound and one single simple
bound, respectively. However, simulation results show that per-
formance depends on the particular interleaver, that is, there are
three different performance curves shown in Fig. 1.

Note that some performance curves of the iterative decoder
can be worse than the upper bound on ML decoding perfor-
mance because iterative detection is suboptimal.

Fig. 1 also shows a comparison of the simple bound with
the transfer function bound. We observe that the simple bound
is tighter than the transfer function bound at the low range of
SNRs. At a BER of 107! the simple bound is about 0.7 dB
tighter than the transfer function bound. It is well known that
the transfer function bound diverges above the cutoff rate. The
cutoff rate corresponds to £, /Ny = 2.01 dB for rate 1/3 codes.

D. Truncated Union Bounds

A free distance dy,.. originally is a minimal Hamming dis-
tance between different encoded sequences of a convolutional
code. Since a convolutional code does not use blocks, process-
ing instead a continuous bitstream, the value of d ... applies to
a quantity of errors located near to each other. However, practi-
cally, a block size is used for most systems using a convolutional
code. Then, with a fixed block size and a proper trellis termi-
nation scheme dy... can be understood as the minimum dis-
tance, such as in PCCCs or turbo codes. For a linear binary code
C(N, K) with free distance dfre., we will denote by Ny .. its
multiplicity (the number of codewords with weight d ), and
by wfree its information bit multiplicity (defined as the sum of
the Hamming weights of the V..., information frames generat-
ing the codewords with weight d...). For very high values of
Ey/No, we can write the bit error rate P,

2E, K
P, ~ MQ ( ‘J_dfree> . (8)

K Nog N

For turbo-like codes, a better approximation can be obtained
by including the other smallest terms of the distance spec-
trum [21].

By the symbol UB(j), we will denote the union bound ex-
pression, truncated to the contribute of the jth nonzero distance,

UB(j) = - (i)
D=9 C)

where d(7) is the ith nonzero distance and N (i) is the number
of codewords with weight d(7). The term w(7) is defined as the
sum of the Hamming weights of the N () information frames
generating the codewords with weight d(¢). In [21], branch and
bound algorithms [25] for finding several smallest distances
and their multiplicities were developed allowing performance
of turbo codes and SCCCs to be approximated by truncated
union bounds at high SNRs. Since these algorithms are based
on the branch-and-bound method [25], complexity for finding
the whole weight distribution is intractable.

1. UPPER BOUNDS FOR THE TURBO-LIKE CODE
WITH A PARTICULAR INTERLEAVER AND THE
LDPC CODE WITH A PARTICULAR PARITY
CHECK MATRIX

The simple bound is the tightest closed-form upper bound
on the decoding error rate [20]. We use the simple bound for
the turbo-like code with a particular interleaver and the LDPC
code with a particular parity check matrix. To use the simple
bound, we need the conditional probability p(d|w) that is de-
fined in (1). But it is intractable to obtain p(d|w) because of
complexity. Thus, we want to obtain the ML estimator pyp.g of
p(d|w). Since for a given input sequence weight w and output
codeword weight d, we want to know A,, 4 in order to obtain
the probability of picking one of the A,, 4 codewords among
the (g ) codewords, this problem is the same as estimating the
probability of picking one of white balls, when a ball is drawn
with replacement from an urn that contains 4,, 4 white balls and
[(K ) — Auw,a] black balls. The indicator function I, 4(c) is de-

w

fined by

Ly.a(c) = 1, 1if ¢cis acodeword with d given w,
wd 0, otherwise

where w is an input sequence weight and d is an output code-
word weight. Then, I,, 4(c) is the Bernoulli random variable
with p = p(d|w). If we let k be the number of codewords
with the Hamming weight d for input sequences of the Ham-
ming weight w among N, generated sample codewords, k is
the sum of the Bernoulli random variables associated with each
of the Ny independent trials. Then, k is the binomial random
variable with the following probability mass function

(10)

N,
P(klp) = <,j>p"(1 -p)" " (11
fork = 0,1,---, N,. In order to obtain the-ML estimator pyiLE,

we maximize the likelihood function P(k|p)

~ N, _
Puve = max P(k|p) = max ( ) )p’“(l -p)™Tr 12

Differentiating the argument and setting the result equal to 0
give the solution

. k
PMLE = +7-

N, (13)
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Fig. 2. Comparison of upper bounds of the several exact smatlest dis-
tance terms, the approximate distribution only, and the approximate
distribution with the several exact smallest distance terms (turbo
code with optimized spread interleaver, (r = 1/3, K = 1,000)).

It is also straightforward to verify that this solution is the
global maximum. We approximate p(d|w) by Dyvrr- Then,

o= (1
w

where ﬁw,d is the estimated weight distribution.

We choose N, = 10, 000 because the thresholds of the simple
bounds for N, = 1,000, 10,000, and 100, 000 were found in
simulations to be similar for this code. In order to obtain 4., 4,
we generate N; = 10,000 codewords randomly for each in-
put weight w, calculate %k from the generated codewords, and
obtain Xw,d using (14). The several exact smallest distances
{Awyd}izénmtio are included in A\w,d using the algorithm in [21]
to approximate error floor region better at medium to high SNRs
because for very high values of E, /Ny these several smallest
distance terms are dominant, especially up to second or third
terms. Thus, we included terms up to dy,4y, + 10, conservatively,
if we could calculate them.

In Figs. 2 and 3, the optimized spread interleaver of a
turbo code is obtained by maximizing the interleaver bit loca-
tions [24]. In Fig. 2, we compare three cases, i.e.,
when the several exact smallest distance terms are only
considered,

o the approximate distributions only,

¢ the approximate distributions with the several exact small-

est distance terms.

The practical iterative simulation decoding performances are
approximately suboptimal in ML sense at the medium range of
SNRs because the simulation performance of iterative decoding
is worse in the medium SNR region than the proposed bound
and no wonder, even worse than ML decoding performance. In
order to show this point, we compare the simulation result with
the proposed bound and other bounds.

In Fig. 3, simple bounds using approximate distributions with
the several exact smallest distance terms are compared with it-
erative decoding simulation results for turbo codes with three
different interleavers. We obtain three different accurate upper

k

A (14)
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sults for turbo codes with various interleavers (r = 1/3, K = 1,000).
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Fig. 4. Simple bound using an approximate distribution with the several
exact distance term and iterative decoding simulation result for LDPC
code with (r = 7/8, (N, K') = (8006, 700)).

bounds for each interleaver. Again as in Fig. 2, the practical it-
erative simulation decoding performance is approximately sub-
optimal in ML sense at the medium range of SNRs because the
simulation performance of the iterative decoding is worse in the
medium SNR region than the proposed bound and even worse
than the ML decoding performance. To clarify this point, we
compare the simulation results with the proposed bounds.

As another application, we consider (N, K) = (800, 700)
regular LDPC codes. The rate for this LDPC code is 7/8. In
Fig. 4, the simple bound with both the exact minimum distance
term of dimin = 2 and an approximate weight distribution is
compared with the iterative decoding simulation performance at
fixed iterations of 50 for rates r = 7/8. The minimum distance
of the LDPC code is calculated using the algorithm in [23]. Note
that a particular LDPC code is taken into account for both the
codewords with the minimum distance and approximate weight
distributions. In Fig. 4, the practical iterative simulation decod-
ing performance is approximately suboptimal in ML sense at
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medium to high range of SNRs because the simulation per-
formance of the iterative decoding is worse in the medium to
high SNR region than the proposed bound and even worse than
ML decoding performance. In order to emphasize this point, we
compare the simulation result with the proposed bound.

We also observe in Figs. 3 and 4 that at the low range of SNRs
the thresholds of the simple bound are approximately the chan-
nel capacity of rate + = 1/3, i.e., —0.55 dB and rate r = 7/8,
i.e., 2.98 dB. Further research, however, will be required to sup-
port and prove such reasoning.

IV. CONCLUSION

We have presented a new bounding technique on MI. decod-
ing performance which is useful for turbo-like code with a par-
ticular interleaver and LDPC code with a particular parity check
matrix. Unlike most of the previous bound techniques, this pro-
posed bound does not use ensemble codes or the uniformly in-
terleaved assumption, which bound the performance averaged
over all ensemble codes or all interleavers. The proposed up-
per bound is based on the simple bound with estimated weight
distributions including the several exact smallest distance terms.
The proposed bound gives the good bounding information both
on the water fall region and on the error floor region. This bound
can be used to predict ML decoding performance of turbo-like
code with a particular interleaver and LDPC code with a partic-
ular parity check matrix without Monte-Carlo iterative decoding
simulation. This decoding is currently worse in some SNR re-
gion than the proposed upper bound and no wonder, it is even
worse than ML decoding performance.
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