Function Approximation
Based on a Network with

Kernel Functions of Bounds
and Locality : an Approach of

Non-Parametric Estimation

L

This paper presents function approximation
based on nonparametric estimation. As an
estimation model of function approximation,a
three layered network composed of input,
hidden and output layers is considered. The
input and output layers have linear activation
units while the hidden layer has nonlinear
activation units or kernel functions which have
the characteristics of bounds and locality.
Using this type of network, a many-to-one
function is synthesized over the domain of the
input space by a number of kernel functions.
In this network, we have to estimate the
necessary number of kernel functions as well
as the parameters associated with kernel
functions. For this purpose, a new method of
parameter estimation in which linear learning
rule is applied between hidden and output
layers while nonlinear (piecewise-linear)
learning rule is applied between input and
hidden layers, is considered, The linear learn-
ing rule updates the output weights between
hidden and output layers based on the Linear
Minimization of Mean Square Error (LMMSE)
sense in the space of kernel functions while
the nonlinear learning rule updates the
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parameters of kernel functions based on the
gradient of the actual output of network with
respect to the parameters (especially, the
shape) of kernel functions. This approach of
parameter adapltation provides near optimal
values of the parameters associated with
kernel functions in the sense of minimizing
mean square error.

As a result, the suggested nonparametric
estimation provides an efficient way of
function approximation from the view point of
the number of kernel functions as well as
learning speed.

I. Introduction

An artificial neural network can be evaluated
in terms of its capability of accurately representing
a desired input-output mapping through efficient
training of a given set of teaching patterns. An
accurate representation of a mapping depends on
the proper selection of a network configuration
including the network architecture, the number of

R. M. Kit

35



36

neurons and the type of activation functions, and
the capability of a learning algorithm to find the
optimal parameters for the selected network con-
figuration.

Most artificial neural networks developed up to
date have focused on training the parameters of a
fixed network configuration selected by the
designer. However, it may be an extremely pow-
erful tool for constructing an optimal network, if a
learning algorithm has a capability of automatical-
ly configuring a neural network, in addition to the
adjustment of network parameters. Although
attempts have been made to apply the idea of self-
recruiting neurons to the automatic clustering of
input samples [1} and to the identification of class
boundaries [2], a major effort needs to be expend-
ed to establish a learning algorithm capable of
automatically configuring a network based on the
self-recruitment of neurons with a proper type of
activation functions. As an effort of such
approach, a non-sigmoidal Mapping Neural Net-
work (MNN) [3], called the "Potential Function
Network (PFN)" [4, 5, 6] was presented. The PFN
is capable of approximating a "many-to-one"con-
tinuous function by a potential field synthesized
over the domain of the input space by a number of
computational units called "Potential Function
Units (PFUs)". Recently, Niranjan and Fallside
[7], and Moody and Darken [8] successfully train
the continuous functions using a three-layer net-
work with hidden units which have localized
receptive fields (or Radial Basis Functions). How-
ever, their approach is lacking the flexibility of
determining the proper number of hidden units
according to the desired level of accuracy in the
function approximation. In PFN, the emphasis is
given to the synthesis of a potential field based on
a new type of learning called the "Hierarchically
Self-Organizing Learning (HSOL)" {6]. The dis-
tinctive feature of HSOL is its capability of auto-
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matically recruiting necessary PFUs under the
paradigm of hierarchical learning, implemented
through the successive adjustment of the accom-
modation boundaries or the effective radii of indi-
vidual PFUs in the input domain.

The parameter adaptation in HSOL was based
on Error-Back-Propagation (EBP) algorithm [9].
However, EBP algorithm does not guarantee con-
vergence and generally suffers slow leaming. In
this point of view, a new method of parameter esti-
mation in which linear learning rule is applied
between hidden and output layers while nonlinear
(piecewise-linear) learning rule is applied between
input and hidden layers, is considered. The linear
learning rule updates the output weights between
hidden and output layers based on the Linear Min-
imization of Mean Square Error (LMMSE) sense
in the space of kernel functions while the nonlin-
ear learning rule updates the parameters of kernel
functions based on the gradient of the actual out-
put of network with respect to the parameters
(especially, the shape) of kernel functions. This
approach of parameter adaptation provides near
optimal values of the parameters associated with
kernel functions in the sense of minimizing mean
square error. As a result, the suggested nonpara-
metric estimation provides an efficient way of
function approximation from the view point of the
number of kernel functions as well as learning
speed.

This paper is organized as follows: in section I,
an estimation model, a network with kernel func-
tions of bounds and locality, is suggested and
proved to be an universal function approximator;
in section III, a new learning algorithm comprising
the automatic recruitment of kernel functions as
well as the parameter estimation of a network, is
suggested; in section IV, the simulation of the sug-
gested learning algorithm is shown for various
cases of test samples; and finally, the section V
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addresses the conclusion.

II. Estimation Model

It has been proposed that a discriminant func-
tion, ¢ (x), can be represented by the weighted
summation of a finite number of potential func-
tions [4] as follows:

#0) = S, Kx, x) ®
i=1 :

where K(x, x;) is the ith potential function of x,
obtained by shifting K(x, 0) by x,, and ¢; is a real
constant. For instance, the potential function K(x,
x;) of classical physics varies inversely with || x -
x; ||, ie., K(x, x;) bas the maximum value at X = x;
and decreases monotonically to zero as || x - x; ||
approaches infinity.
Here, the potential function is selected based
on the following condition:

K& Y= S ) and

i=l
maxK(x,x) < L 2)
X

where the function system {¢; (x) } is orthonormal
in the space of x and L is a bounded scalar.

To train the given function from the teaching
samples, a learning algorithm similar to that of the
Perceptron [10] has been proposed for applying
(1) to binary classification;

¢#“(x) + K(x, x,) if the sample, x,,
is labelled +1 and ¢r4(x,) < 0

F(x) = ¢PUx) - K(x, x;) if the sample, x, 3)

is labelled -1 and ¢r(x,) = 0
()

otherwise
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It has been shown that (3) converges within
finite steps.

The potential function approach to binary clas-
sification described by(1) and (3) has a similar fla-
vor to the nonparametric estimation of a probabili-
ty density function based on the Parzen window
[11]. In the Parzen window approach, a probabili-
ty density function, p(x), is estimated from the

observed input samples, x;s,i=1, -, n, by
X)= 4
P9 = 2 3w @

where 1p represents a bounded nonnegative kernel
function of the d dimensional input vector, x, and
h, is a sequence of positive numbers such that
lim, ., 4, = 0 and lim,_,,, nh? = . It can be
shown from (4) that p, (x) converges to p(x) as n
approaches .

The problem associated with (1) or (4) is that
the number of potential functions or kernel func-
tions required for implementing an unknown func-
tion becomes potentially very large proportional to
the number of input samples. This is due to the
fact that (1) or (4) is based on the shifted summa-
tion of prespecified shape (variance) of the poten-
tial or kernel functions assigned to individual
input samples. This problem may be resolved by
relaxing the fundamental constraints associated
with (1) or (4): the position shift of a kernel func-
tion should correspond to the coordinate of input
samples and the shape of a kernel function should
be fixed, and by introducing a methodology of
self-recruiting a minimum necessary number of
kernel functions with the capability of adjusting
both the position shift and the shape parameters of
individual kemel functions.

A generalized form of (1) or (4), incorporating

R. M. Kil

37



38

the adjustment of shape parameters and the self-
recruitment of kernel functions, can be expressed

as
M
p9= Scvp) ®)
{=1

where M represents the number of kernel func-
tions to be recruited, ¢; represents the summation
weight, and p; represents a new parameter vector
including both the position shift and the shape
parameters of the ith kernel function. In (5), M, c;
and p;, i=1, --+, M, are subject to the adjustment
through learning. (5) may be able to achieve a
desirable error level in function approximation
with a smaller number of kernel functions, but
may require a more complicated learning algo-
rithm.

According to Funahashi [12] and Hornik,
Stinchcombe and White [13], (5) can approximate
a continuous function with a desirable degree of
accuracy based on a sufficiently large number of
hidden units, provided v is an absolutely inte-
grable or a bounded monotonic (squashing) func-
tion. Here, let us investigate the mapping capabil-
ity of a network using kernel functions which have
the following properties:

1. Bounds:
Lw sY®x p) s Ut,u (6)

where L, and U, represent the lower and upper
bounds of y(x, p) respectively.

2. Locality:
[T s pdx=c ™
lim )Y y(x, B,) = CB() ®)
R. M. Kil

where N is the dimension of x and C is a positive
constant.

There are many functions satisfying the above
conditions. The examples of such kernel functions
are

2

fx,a)=e @ ©)
F(x,a) = Sinc(=) = 2 sin(™%y (10)
a X a
. a
f(x,a)=Recz(f)={1 iflxl=Z
a 0 otherwise

etc. Note that the above functions satisfy

lima_,olf(x,a)= 6(x). Note also that the
Radial Bdsis Function, g ; Rn — R, g(x) = H(| x
- X, |), where H is some smooth real function of
distance, || x - X, || from the center x,, in the input
space, can be used as a candidate of kernel func-
tions. Here, we suggest the following theorem
claiming the network using kernel functions of

bounds and locality as the universal approximator.
Theorem 1 Every continuous function f(x)
defined on a compact set R, can be approximated
by a network represented by (5), i.e., for € >0,
there exists a ¢(x) such that
[Ax)-¢(x)| =¢ Vx ERY (12)

Proof Let us define f° (x) as

£ @)= FC) w(x.p,)

- [THOC vx-Ep)aE  (3)

and the integration of kernel function multi-
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1 . .

plied by (— )" is normalized to 1 for the con-
a

venience, i.e.,

f. (%)N P(X,p,)dx = 1. (14)

By choosing ¢ small, f*(x) can be approximat-
ed by

0= [ FED
(X E,p,)dE. (15)

Thus, the difference between f{x) and f'(x) is
given by

fR)=F = f o B~ F(E)

(i—)” Y(x-Ep,)dE.  (16)

~Ejxa

Let us define g,(x, a) as

81X, @) = (X)) - f(5)| forx €1}
={x||x-E|=a}.  (7)

By the assumption of continuity of {x), we can
safely assume that

g (X a)= €,(a) (18)

where €4(a) is a small positive constant. Note
that lim,_,, &,(a) = 0.

This implies,
1160~ £ l=q @f .. )"

Y(x-§,p,)dE =4 (a). (19)
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Now, let us approximate f "(x) as the Riemann
integral form, i.e.,

£ o= [T FEGY vix-5,p.)dE

S £ 9= x.p,)a" + £5(x,a)

x. &l a

S WX~ X,B,) + &5 (x, )

xke’?.

W

(20)

where x; is the point of a square grid of spac-
ing a, I, is the finite set of lattice points and &,
(x,a) is the discretization error with the proper-
ty of lim, ,, &, (x,a)=0.

Let us define €,(a) as
€,(a) = maxe,(X, a). PA))]
X
Then the condition for total absolute error
between f{x) and ¢ (x) is derived from (18) and
2V by

If()-¢ ()] = € (a) (22)

where €(a) is defined as €(a) = €,(a) + €4(a)
with the property of lim,_, €(a) =0. Q.E.D.

One of examples using this type of function
approximation is recovering functions from sam-

pling. In the sampling theory, functions can be
recovered by the following forms:

fx) =3 FX)Sinc[2B(x - X)) (23)
f(x) =Y f(id)e 2B (24)

where X is a sampling distance defined by X = -21; .
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Note that (23) can perfectly recover the original
function if the function is smooth (i.e., band-limit-
ed continuous function by the frequency domain
of [0,B]) [14]. (24) implies the Gaussian low-pass
filtering of the original function.

It is interesting to investigate the mapping
capability of a network according to different
types of kernel functions. The simulation results
for the mapping capability indicate that the sinu-
soidal activation function provides the best map-
ping capability among the three, while the Gaus-
sian activation function provides better mapping
capability than the sigmoidal activation function
(6]. Note, however, that in case the number of
sample points is not large enough for the interpo-
lation errors between samples to be ignored, the
selection of an activation function should account
for its capability of accurately interpolating the
mapping between samples or its power of general-
ization. But the generalization power of an activa-
tion function may be highly dependent on the local
characteristics of a particular mapping. This
implies that the interpolation accuracy needs to be
ensured adaptively through the self-recruitment of
kernel functions based on training. In this case, an
activation function which is not only powerful in
generalizing a global mapping but also effective in
refining local features without much altering the
already learned mapping is desired. This makes a
Gaussian activation function a good candidate for
a network with self-recruitment. Here, a Gaussian
activation function, an unnormalized form of
Gaussian density function, is selected as an kernel
function of the network, since the function is high-
ly nonlinear, provides good locality for incremen-
tal learning, and has many well defined mathemat-
ical features. A Gaussian kernel function y; is
defined by

Vi =Y (x, p;) =een” 25)
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[[% ~ m,|?
2

d(x,p;)=d(x,m; ;) = (26)

where X represents an input pattern, m; and o
represent respectively the mean vector and the
standard estimation of the ith Gaussian kernel
function.

The network model proposed here is composed
of three types of layers: the input layer, the hidden
layer and the output layer. The input and output
layers are composed of linear units, and the hidden
layer is composed of Gaussian kernel functions.
The weighted output values of the Gaussian kernel
functions are summed by the connection between
the hidden layer and the output layer in order to
synthesize the desired function. Figure 1 illus-
trates the schematic diagram of the proposed net-
work using Gaussian kernel function. Note that,
for the network producing multiple outputs, we
opt for each oufput being generated independently
by its own set of kernel functions. This makes
learning simpler.

Output Layer

Hidden
Layer

Input
Layer

xl xz K] xN

Fig. 1 The schematic diagram of a network using
Gaussian kernel functions.
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III. Parameter Estimation

For the proposed network, learning concerns
mainly about the determination of minimally nec-
essary number of kernel functions and the estima-
tion of parameters of a network. The strategy to
decide the minimally necessary number of kernel
functions is to increase the number of kernel func-
tions incrementally whenever a new kernel func-
tion needs to be defined for the further improve-
ment of network performance, that is, reducing the
network errors for the teaching patterns. The net-
work performance can be related with the root
mean square error defined by

N
Erms = \/_IIVZ(yk _)‘;k(xk))2 (27)
k=1

where N represents the number of training pat-
terns, (X, y;) represents (input, output) training
patterns and  y, (x, )represents an actual output of
the network for the given input training pattern, x,.

For the proposed network, the following learn-
ing algorithm divided by three learning phases is
suggested:

Phase 1 Learning: recruiting the necessary
number of kernel functions

The goal of phase 1 Learning is to recruit the
necessary number of kemel functions. In phase 1
learning, firstly, for the given input teaching pat-
tern, the actual output of a network is génerated
and compared with the output teaching pattern. If
the error between the actual output and the output
teaching pattern is higher than specified error, a
new kernel function is recruited at the position of
the input teaching pattern and the shape of kernel
function is decided according to the minimum dis-
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tance between the position of a newly recruited
kemnel function and the positions of existing kernel
functions. In this case, the output weights of ker-
nel functions are adjusted in such a way that a net-
work generates exact values with the output teach-
ing patterns at the positions of kernel functions.
For the hierarchical recruitment of kernel func-
tions, the specified emor is reduced as the number
of iterations increases. The estimation of output
weights for the exact mapping at the positions of
kernel functions is determined as follows:

Let us first define a k x k matrix, ¥, as

Yu Yoo o Y,
Yo Wy e Yy

W, - . . . 28)
Wiy Yo ** Y

where v;; represents the output of the jth kernel
function for the ith input teaching pattern.

Let us also define a k dimensional vector, ¥Yi as
Y = [ Y2 -+, »J” where y; represents the ith
output teaching pattern. Then the output weight
vector, ¢, = [¢y, Cy, +++, ¢;]J7 where ¢; represents
the output weight of the ith kernel function, is

given by
=Wy, . (29)
The &+1th matrix of (28) is given by
| u
W= (30)
Vit Yraka

where u is a k dimensional vector defined by u =
[w1,k+1’ wz,lc+1’ U T'Uk. k+1]r and v is a k dimen-
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sional vector defined by v = [y 1, Woger, ***
Y k1]’

The inverse matrix of (30) can be represented
by the following form:

A I b
\P[il = (31)
da’ : c

Using the recursive formula of inverse matrix, A,
b, c and d can be derived as follows:

S
- uv
A= ‘l’kl + Wi ‘IT’I: _1 (32)
wk+1k+1 -y ‘pk u
vi'u
b=- 1 (33)
Vi —V Y0
1
c=+ — (34)
Vistke1 =V Wi
T, -1
vy
d = - kT -1 (35)
Yistke1 —V W @
Since
Chat = WearYkats (36)
Cri1 = [CZewscku]T can be evaluated as
;™ = ¢ +be,,, (37)
€ = Copy (38)

where e;,, represents the k+1th error defined by
€1 = Vi1 - Ve +1 and Jy +1 represents actual
output of the network for the k+1th teaching pat-
tern.

Based on the derivation described above, the
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estimation procedure is summarized as follows:

Estimation Procedure (initial condition: k =
0,n=1and J; =0.)

Step 1 Present a new input pattern, x,, to the net-
work.

Step 2 Get an actual output of the network, ¥, = ¢
(x,)-

Step 3 Calculate an error of the network, e, =y, -
j}rl

Step 4 Check the condition of recruitment:

If e, > e, (error criteria),
- recruit a new kernel function such that

m;,, =X, and (39)
Opy & m,in I l Xy -y I I » (40)
]

- adjust ¢, according to (37) and (38),
~andk=k+1.

In the case of initial setting of o, that is o,
any arbitrary value within the domain of
input space can be selected.

Step 5 Estimate the rms error of the network:

* If one epoch of patterns are presented to
the network, estimate the rms error of the
network given by (27) where in this case,
N represents the number of patterns in one
epoch.

* Otherwise,

-n=n+1.
-goto Step 1.

Step 6 Check the condition of termination:
*IfE,, > specified error,
-e.=r.¢. in which r, represents the decre-
ment rate of error criteria, e,.
-n=1.
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- go to Step 1.
* Otherwise, stop.

Phase 2 Learning: tuning of shape parameters
of kernel functions

After phase 1 learning, the positions of kernel
functions represent the reference points of the
teaching patterns, i.e., the network generates the
exact values at the positions of kernel functions.
However, this is not so desirable from the view
point of interpolation between the positions of ker-
nel functions and of noisy teaching patterns. In
this sense, the parameters (especially the shape
parameters in this case) of kernel functions are
adjusted in such a way to minimize the root mean
square error between the desired and actual out-
puts so as to increase generalization capability. In
phase 2 learning, the parameters of kernel func-
tions are adjusted based on piecewise-linear
approximation of a network in the space of the
parameters of kernel functions. This type of
parameter estimation is considered based on the
assumption that the parameters of kernel functions
are near the optimal values through phase 1 learn-
ing which gives rough approximation of the given
teaching patterns. The estimation of parameter
vector of kernel functions is determined as fol-
lows:

Firstly, let us assume a network with M kernel
functions and define the kth teaching pattern, y; as

Ve = W(@) +wy (41)

where ¥, () represents the actual output of net-
work in which @ represents the optimal parameter
vector of kernel functions defined by o = [0y, Gy, «
+« Oy |7 and w; represents white noise.
Applying the Taylor-series approximation to
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¥ (o) around o,
SACESACH)

s ‘ 4
o] 0o @

Let us also define tilde ¥ as

. T
Vi =Y —h(0) - [%Xk‘(oo) ‘50}‘ (43)
o
3% T
- [—a’g—(ow o+ w, (44)
=hjo+w, (45)

where b, is a vector defined by b, = % (oy)

From (45), the optimal parameter vector, O can
be derived in the Linear Minimum Mean Squared
Error (LMMSE) sense. Here, the resultant k+1th
estimate of 0, Oy, is determined by -

Oy = O +2,6, (46)

where e, represents the network error for the kth
teaching pattern defined by ¢, =y, - $,(6,) and
a, is a vector defined by

a; =Bkhk and (47)

_ B,_,hhiB, ,

48
1+h!B,_h, 48)

Bk = Bk—l

where By = LE I and € is a small constant. For
large k, the choice of € is unimportant.

Based on the derivation described above, the
estimation procedure is summarized as follows:

Estimation Procedure (initial condition:
k=1and N, =0.)
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Step 1 Present a new input pattern, x, to the net-

work. _

Step 2 Get an actual output of the network,
5’1( =¢ (xk)-

Step 3 Calculate an error of the network, e, =y, -
Vi

Step 4 Update the parameter vector, g,,, of
kernel functions according to (46).
Step 5 Check the condition of termination:
*If k<N,
-k=k+l.
-goto Step 1.
* Otherwise,
~ “Yepoch =Nepach +1.
~If Nepoer < specified number,
*k=1.
* go to Step 1.
Otherwise, stop.

Phase 3 Learning: tuning of output weights of
a network

In phase 3 learning, the output weights of ker-
nel functions are adjusted. This process is required
since the basis vectors represented by the outputs
of kernel functions are changed through phase 2
learning. The output weights of kernel functions
are trained in the LMMSE sense. The estimation
of output weights of kernel functions is deter-
mined as follows:

Let us define a vector h, representing the out-
put vector of M kernel functions as h, = [y, ¥,
+ « +, Ypgl". Then similar to the phase 2 learning,
the output weights of kernel functions can be
derived in the LMMSE sense. Here, the resultant

k+1th estimate of output vector, ¢, , Is deter-
mined by '
Cra1 = € + Ay, (49)
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where e, represents the network error for the ith
teaching pattern defined by e, = y; - ¥,(¢,) and a,
is a vector defined by

a = Bkhk and (50)

B,_h,hiB,_)

B, =B, -
TRl 14 0IB,_h,

(51)

where By = lEI and € is a small constant, For
large k, the choice of € is unimportant.

Based on the derivation described above, the
estimation procedure is summarized as follows:

Estimation Procedure (initial condition: £ = 1
and N o0 = 0.)
Step 1 Present a new input pattern, x; to the net-
work,
Step 2 Get an actual output of the network,
y = ¢ (x0)-
Step 3 Calculate an error of the network, e, = y, -
Y.
Step 4 Update the output weights, ¢, of kernel
functions according to (49).
Step 5 Check the condition of termination:
*If k<N,
-k=k+1.
- go to Step 1.
*+ Otherwise,
_Nepoch =Nepoch +1.
—If Npoen < specified number,
*k=1.
* go to Step 1.
Otherwise, stop.

The whole learning sequence is going through
phase 1, 2 and 3 learning processes. Here, phase 1
learning process is related to the recruitment of
Gaussian kernel functions while phase 2 and 3

ETR] JOURNAL, VoL 15, No 2, 1993. 10.



learning processes are related to the parameter
estimation. The number of iterations of phase 1
learning can be decided by user’s requirement on
the desired level of accuracy of the network. For
the phase 2 and 3 learning processes, it usually
takes 2 or 3 epochs to achieve the near lgcal opti-
mal parameters. The phase 2 and 3 learning pro-
cesses can be continuously performed in an alter-
nate way for the further minimization of network
error. This helps to find the near global optimal
parameters. However, in most cases, 1 pass of
phase 1, 2 and 3 learning processes is sufficient in
the sense of minimizing both computation time
and rms error of the network. The convergence of
phase 2 and 3 learnings are guaranteed assuming
that the nonlinear parameters of Gaussian kernel
functions are well approximated by the first order
Taylor expansion. This assumption is quite valid
since the network approximates the given teaching
patterns in such a way to have exact values at the
positions of Gaussian kernel functions during
phase 1 learning process and this implies that only
minor adjustment (fine tuning) of network parame-
ters is required for the interpolation between the
positions of Gaussian kernel functions.

IV. Simulation

The suggested learning algorithm is applied to
the various cases of function approximation. As
the examples of function approximation, four sets
of data are selected: 2 sets of data for one dimen-
sional continuous functions, 1 set of data for two
dimensional continuous function and 1 set of data
for Mackey-Glass chaotic time-series,

For the simulation of one dimensional continu-
ous functions, linear and sinusoidal functions as
illustrated in Figures 2-(a) and (b) respectively, are
considered. The given equations are
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f1(x) = 2fx| and
fo(%) = sin(mx) for x] < 1.

(2)
(53)

For each function, 500 teaching patterns are ran-
domly selected, another randomly selected 500
patterns are used for the test patterns to evaluate

" the performance of training. With 20 epochs of

phase 1 learning and 2 epochs of phase 2 and 3
learning, 20 and 13 kernel functions are recruited
for linear and sinusoidal functions respectively.
The rms errors for linear and sinusoidal functions
are evaluated as 0.0030 and 0.0026 respectively.
The error curves for linear and sinusoidal func-
tions are illustrated in Figures 2-(c) and (d) respec-
tively..

For the simulation of two dimensional continu-
ous function, the following sinusoidal function is
considered:

F5x, ¥) = 0.dsin (7 x) + 0.6¢co0s (7y) (54)
where the domains of x and y are restricted by the
values between -1 and 1.

The 3-D mesh graph of f{x, y) is shown in Fig-
ure 3-(a). For the teaching patterns, 1000 patterns
are randomly selected from the given function,
and another 1000 randomly selected patterns are
used for the test patterns to evaluate the perfor-
mance of training, The actual output of a network
after 15 epochs of phase 1 learning and 2 epochs
of phase 2 and 3 learning, is illustrated in Figure
3-(b). The the error surface after learning is illus-
trated in Figure 3-(c). In this error curve, the error
values near the boundary of input space domain
appear high value since relatively smaller number
of teaching patterns are trained in this region. The
rms error of this training is evaluated as 0.0155.
For this level of performance, 34 kernel functions
are recruited. In [15], 18 Gaussian units are
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recruited to achieve the similar level of perfor-
mance. However, in this approach, it takes more
than 100 times of processing time.

The discrete version of the Mackey-Glass (M-
G) chaotic time-series [16] is considered as an
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another example of function approximation. The
discrete version of the M-G time-series is
described by

x(t+1) = (1-a)x(0) + - bx(t 1)
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Fig. 2. Simulation Results for 1-D data : (a) and (c) represent the linear type teaching function and
error between the teaching function and the actual output of network respectively. (b) and
(d) represent the sinusoidal teaching function and error between the teaching function and

the actual output of network respectively.
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Fig. 3. Simulation Results for 2-D data : (a), (b) and (c) represent the 3-D mesh graphs for the teach-
ing function, the output of networkafter learning and the error between the teaching function

and the output of network respectively.

By setting ¢ = 0.1, b = 0.2, and 7 =17, a chaotic
time series with a strange attractor is produced
[17]. The following form of time-series,

x(t+85)= f (x(2), x(2-6), x(¢-12), x(t-18)) (56)
is used for the estimation of M-G chaotic time-
series. Similar to the previous works [16, 17], the

suggested network were trained with the 500 train-
ing data and were tested with the succeeding 500

ETRI JOURNAL, VoL 15, No 2, 1993. 10,

data. The generated M-G chaotic time-series is
shown in Figure 4-(a). To define the prediction
accuracy, the normalized root mean squared error?)
is considered to remove the dependency on the
dynamic range of data.

The results of simulation are shown Figure 4-
(b): the curves shown in Figure 4-(b) illustrate the

) The normalized root mean squared error defined by
the root mean squared error divided by the standard
deviation of the given time-series, x (+).
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Fig. 4. Simulation Results for Mackey-Glass chaotic time-series : (a) represents the tested Mackey-
Glass chaotic time-series and (b) represents the plotting of normalized rms error versus the
number of kernel functions. In (b), datal and data2 represent the prediction accuracy with
phase 1 learning process, and phase 1, 2 and 3 learning processes respectively while the num-
ber in data3 represents the prediction accuracy for three different learning methods suggested
by Moody and Darken.
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prediction accuracy versus the number of kernel
functions for the testing data. Here, datal and
data2 represent the prediction accuracy with phase
1 learning process, and phase 1, 2 and 3 learning
processes respectively while the number in data3
represents the prediction accuracy for three differ-
ent learning methods suggested by Moody and
Darken [8]. In data3, 500 teaching patterns are
used for 1 and 2 while 5000 teaching patterns are
used for 3.

The simulation results represented by datal
and data2 show us that 1) the normalized errors
for the training data can be reduced to smaller val-
ues by increasing the number of kernel functions,
but 2) those for the testing data begin to level off
around 300 kernel functions. This indicates that
500 training data are not sufficient for the network
to generalize the testing data. Note also that the
parameter adaptation processes (phase 2 and 3
learning processes) are not very effective on
reducing the prediction error when the number of
Gaussian kernel functions becomes larger. This is
due to the fact that the degree of freedom at which
the network parameters can be varied becomes
smaller when the number of Gaussian kernel func-
tions becomes larger. In the case that our approach
is compared data3 made by [8], our approach
requires smaller number of kernel functions and
teaching patterns to achieve similar level of per-
formance: for instance, when compared best data
of [8] (refer 3 on data3), around 2 times more pro-
cessing units and 10 times more training data are
required for [8] to achieve the similar level of pre-
diction accuracy.

V. Conclusion

A new way of nonparametric estimation for the
function approximation is presented in this paper.

ETRI JOURNAL, voL 15, No 2, 1993. 10.

The proposed network of estimation model is
composed of input, hidden and output layers in
which the input and output layers have linear acti-
vation units while the hidden layer has nonlinear
activation units or kernel functions which have the
characteristics of bounds and locality.

For the proposed network, learning concerns
mainly about the determination of minimally nec-
essary number of kernel functions and the estima-
tion of parameters of a network. The strategy to
decide the minimally necessary number of kernel
functions is to increase the number of kernel func-
tions incrementally whenever a new kernel func-
tion needs to be defined for the further improve-
ment of network performance. For the parameter
estimation of a network, linear learning rule is
applied between hidden and output layers while
nonlinear (piecewise-linear) learning rule is
applied between input and hidden layers. The lin-
ear learning rule updates the output weights
between hidden and output layers based on the
Linear Minimization of Mean Square Error
(LMMSE) sense in the space of kernel functions
while the nonlinear learning rule updates the
parameters of kemnel functions based on the gradi-
ent of mean square error with respect to the
parameters (especially, the shape) of kernel func-
tions, This approach of parameter adaptation pro-
vides near optimal values of the parameters asso-
ciated with kernel functions in the sense of mini-
mizing mean square error. The simulation results
for the function approximation show that the sug-
gested nonparametric estimation is efficient from
the view point of the number of kernel functions
as well as learning speed.

The suggested network can contribute to the
advancement of a new methodology for designing
a more general form of mapping networks. The
obvious advantage of the suggested estimation
technique is providing a solution to the problems
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encountered in conventional learning techniques
due to the existence of local minima, flat error sur-
face curvature, as well as structural inflexibility.
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