DOI QR코드

DOI QR Code

Adaptive Fuzzy Sliding Mode Control for Nonlinear Systems Using Estimation of Bounds for Approximation Errors

근사화 오차 유계 추정을 이용한 비선형 시스템의 적응 퍼지 슬라이딩 모드 제어

  • 서삼준 (안양대학교 전기전자공학과)
  • Published : 2005.10.01

Abstract

In this paper, we proposed an adaptive fuzzy sliding control for unknown nonlinear systems using estimation of bounds for approximation errors. Unknown nonlinearity of a system is approximated by the fuzzy logic system with a set of IF-THEN rules whose consequence parameters are adjusted on-line according to adaptive algorithms for the purpose of controlling the output of the nonlinear system to track a desired output. Also, using assumption that the approximation errors satisfy certain bounding conditions, we proposed the estimation algorithms of approximation errors by Lyapunov synthesis methods. The overall control system guarantees that the tracking error asymptotically converges to zero and that all signals involved in controller are uniformly bounded. The good performance of the proposed adaptive fuzzy sliding mode controller is verified through computer simulations on an inverted pendulum system.

본 논문에서 불확실한 근사화 오차 유계 추정을 이용한 불확실한 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기를 제안하였다. 계통 출력이 기준 출력을 추종하기 위해 시스템의 불확실성은 결론부 파라미터의 적응 알고리즘에 의해 온라인으로 조정되는 IF-THEN 규칙을 가지는 퍼지 시스템에 의해 근사화하였다. 또한 근사화 오차가 미지의 상수에 의해 유계된다는 가정 하에 리아프노프 합성법으로 근사화 오차 유계 추정 알고리즘을 제안하였다. 전체 제어 시스템은 제어기내의 모든 신호가 균등 유계이고 추종오차가 점근 안정함을 보장한다. 제안한 적응 퍼지 슬라이딩 모드 제어기의 성능을 도립진자 계통에 대한 컴퓨터 모의실험을 통해 입증하였다.

Keywords

References

  1. C. C. Lee, 'Fuzzy logic control systems : Fuzzy logic controller-part I, II,' IEEE Trans. Systems, man and cybernetics, Vol. 20, No.2, pp. 419-428,1990 https://doi.org/10.1109/21.52552
  2. H. J. Zimmermnn, Fuzzy set theory and its application, 2nd ed., Kluwer Academic Publishers, 1991
  3. DeCarlo, R. A. et al., 'Variable structure control of nonlinear multi variable systems : a tutorial,' Proceedings of the IEEE, vol. 76, no. 3, pp. 212-232, 1988
  4. J. Y. Hung, W. Gao, and J. C. Hung, 'Variable structure control: a survey,' IEEE Trans. Industrial Electronics, vol. 40, no. 1, pp. 2-17,1993 https://doi.org/10.1109/41.184817
  5. R. Palm, 'Robust control by fuzzy sliding mode,' Automatica, vol. 30, no. 9, pp. 1429-1437, 1994 https://doi.org/10.1016/0005-1098(94)90008-6
  6. G. C. Hwang and S. C. Lin, 'A stability approach to fuzzy control design for nonlinear systems,' Fuzzy Sets and Systems, vol. 48, pp. 279-287, 1992 https://doi.org/10.1016/0165-0114(92)90343-3
  7. S. W. Kim and J. J. Lee, 'Design of a fuzzy controller with fuzzy sliding surface,' Fuzzy Sets and Systems, vol. 71, pp. 359-367, 1995 https://doi.org/10.1016/0165-0114(94)00276-D
  8. L. X. Wang, 'Stable adaptive fuzzy control of nonlinear systems,' IEEE Trans. Fuzzy Systems, Vol. 1, pp. 146-155, 1993 https://doi.org/10.1109/91.227383
  9. B. Yoo and W. Ham, 'Adaptive fuzzy sliding mod e control of nonlinear system,' IEEE Trans. on Fuzzy Systems, Vol. 6, No.2, pp. 146-155, 1998
  10. J. Y. C, 'Fuzzy sliding mode controller design: in direct adaptive approach,' Cybernetics and Systems : An International Journal, No. 30, pp. 9-27, 1999
  11. J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, 1991
  12. L. X. Wang, Adaptive Fuzzy Systems and Control-Design and Stability Analysis, Prentice-Hall, 1994
  13. L.X. Wang, 'Stable adaptive fuzzy control of nonlinear system,' IEEE Trans. Fuzzy Systems, vol, 6, no. 2, pp. 146-155, 1993

Cited by

  1. Design of Integral Sliding Mode Control for Underactuated Mechanical Systems vol.23, pp.3, 2013, https://doi.org/10.5391/JKIIS.2013.23.3.208