• Title/Summary/Keyword: DCT-IDCT

Search Result 59, Processing Time 0.029 seconds

Design of DCT/IDCT Core Processor using Module Generator Technique (모듈생성 기법을 이용한 DCT/IDCT 코어 프로세서의 설계)

  • 황준하;한택돈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.10
    • /
    • pp.1433-1443
    • /
    • 1993
  • DCT(Discrete Cosine Transform) / IDCT(Inverse DCT) is widely used in various image compression and decompression systems as well as in DSP(Digital Signal Processing) applications. Since DCT/ IDCT is one of the most complicated part of the compression system, the performance of the system can be greatly enchanced by improving the speed of DCT/IDCT operation. In this thesis, we designed a DCT/IDCT core processor using module generator technique. By utilizing the partial sum and DA(Distributed Arithmetic) techniques, the DCT/ IDCT core processor is designed within small area. It is also designed to perform the IDCT(Inverse DCT) operation with little additional circuitry. The pipeline structure of the core processor enables the high performance, and the high accuracy of the DCT/IDCT operation is obtained by having fewer rounding stages. The proposed design is independent of design rules, and the number of the input bits and the accuracy of the internal calculation coa be easily adjusted due to the module generator technique. The accuracy of the processor satisfies the specifications in CCITT recommendation H, 261.

  • PDF

An Architecture for the DCT and IDCT using a Fast DCT Algorithm (고속 DCT 알고리즘을 이용한 DCT 및 IDCT 구조)

  • 이승욱;임강빈;정화자;정기현;김용덕
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.103-114
    • /
    • 1994
  • This paper proposes an implementation of DCT (Discrete Cosine Transform) and IDCT (Inverse DCT) using a fast DCT algorithm with shift and addition operations instead of multiplications Based on the proposed algorithm, a new VLSI architecture for the DCT and the IDCT is proposed. It shows modularity , regularity and capability for multiprocessing. Its performance is also simulated by a simulation software, "Compass". The results of the simulation provide the quality of decompression images, the increase in processing speed, representing the superiority of the proposed architecture.

  • PDF

An Efficient Architecture of Transform & Quantization Module in MPEG-4 Video Code (MPEG-4 영상코덱에서 DCTQ module의 효율적인 구조)

  • 서기범;윤동원
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.29-36
    • /
    • 2003
  • In this paper, an efficient VLSI architecture for DCTQ module, which consists of 2D-DCT, quantization, AC/DC prediction block, scan conversion, inverse quantization and 2D-IDCT, is presented. The architecture of the module is designed to handle a macroblock data within 1064 cycles and suitable for MPEG-4 video codec handling 30 frame CIF image for both encoder and decoder simultaneously. Only single 1-D DCT/IDCT cores are used for the design instead of 2-D DCT/IDCT, respectively. 1-bit serial distributed arithmetic architecture is adopted for 1-D DCT/IDCT to reduce the hardware area in this architecture. To reduce the power consumption of DCTQ modu1e, we propose the method not to operate the DCTQ modu1e exploiting the SAE(sum of absolute error) value from motion estimation and cbp(coded block pattern). To reduce the AC/DC prediction memory size, the memory architecture and memory access method for AC/DC prediction block is proposed. As the result, the maximum utilization of hardware can be achieved, and power consumption can be minimized. The proposed design is operated on 27MHz clock. The experimental results show that the accuracy of DCT and IDCT meet the IEEE specification.

Variable Radix-Two Multibit Coding and Its VLSI Implementation of DCT/IDCT (가변길이 다중비트 코딩을 이용한 DCT/IDCT의 설계)

  • 김대원;최준림
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1062-1070
    • /
    • 2002
  • In this paper, variable radix-two multibit coding algorithm is presented and applied in the implementation of discrete cosine transform(DCT) and inverse discrete cosine transform(IDCT). Variable radix-two multibit coding means the 2k SD (signed digit) representation of overlapped multibit scanning with variable shift method. SD represented by 2k generates partial products, which can be easily implemented with shifters and adders. This algorithm is most powerful for the hardware implementation of DCT/IDCT with constant coefficient matrix multiplication. This paper introduces the suggested algorithm, it's proof and the implementation of DCT/IDCT The implemented IDCT chip with 8 PEs(Processing Elements) and one transpose memory runs at a tate of 400 Mpixels/sec at 54MHz frequency for high speed parallel signal processing, and it's verified in HDTV and MPEG decoder.

Image Downsizing and Upsizing Scheme in the Compressed Domain Using Modified IDCT (변경된 IDCT를 이용한 압축 영역에서의 영상 축소 및 확대 기법)

  • 서성주;이명희;오상욱;설상훈
    • Journal of Broadcast Engineering
    • /
    • v.8 no.1
    • /
    • pp.30-36
    • /
    • 2003
  • According to an evolution of image and video compression technologies, most digital images are in the compressed form. Resizing of these compressed images have various applications such as transmission of resized image according to varying bandwidth, content adaptation for display purpose and etc. Discrete Cosine Transform (DCT) is the most popular transformation for image compression. Recently, several researches have been performed to obtain the reconstructed image of original size in the DCT domain after downsampling and upsampling in the DCT domain. Main focus of these researches is to improve quality of the reconstructed image after downsampling and upsampling in the DCT domain In this paper, we present an modified IDCT method to downsize DCT-encoded image. Furthermore, we propose an efficient scheme for image downsampling and upsampling in the DCT domain With these modified IDCT method. The proposed scheme Provides higher PSNR values than the existing schemes In terms of the reconstructed image after halving and doubling in the DCT domain.

Image Resizing in the Compressed Domain Using Modifed IDCT (변경된 IDCT를 이용한 영상의 축소 및 확대 기법)

  • 서성주;이명희;설상훈
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.77-80
    • /
    • 2002
  • 영상압축기술의 발전으로 인하여 디지털 영상은 대부분 압축된 형태로 사용된다 이러한 압축된 영상을 축소 및 확대하는 것은 네트웍환경에서의 대역폭에 따른 축소된 영상 전송과 디스플레이 장치에 맞는 크기로의 영상 조절 등 다양한 응용에 사용 가능하다. 가장 대표적인 압축 방식은 DCT를 이용해서 영상을 부호화하는 것이다. 최근 DCT로 부호화 된 영상에 대해 DCT 영역에서 직접 축소한 후 다시 DCT 영역에서 확대해 원래 크기의 DCT로 부호화 된 영상을 얻는 방법에 대한 연구가 진행되어왔다. 이러한 연구의 주관심사는 최종적으로 부호화 된 결과 영상의 화질을 개선하는 것이다. 본 논문에서는 DCT로 부호화 된 영상을 축소하기 위해, 변경된 IDCT 방법을 제안한다. 그리고 변경된 IDCT 방법을 사용해서 DCT 영역에서 직접 축소된 영상을 얻는 방법과 이에 대응하는 확대된 영상을 얻는 새로운 방법을 제시한다. 제시된 영상 축소 방법과 확대 방법을 같이 사용함으로써 DCT 영역에서 축소 후 확대된 영상은 가장 최근에 제안된 방법들보다 높은 PSNR값을 나타낸다.

  • PDF

A Low-Power 2-D DCT/IDCT Architecture through Dynamic Control of Data Driven and Fine-Grain Partitioned Bit-Slices (데이터에 의한 구동과 세분화된 비트-슬라이스의 동적제어를 통한 저전력 2-D DCT/IDCT 구조)

  • Kim Kyeounsoo;Ryu Dae-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.2
    • /
    • pp.201-210
    • /
    • 2005
  • This paper proposes a power efficient 2-dimensional DCT/IDCT architecture driven by input data to be processed. The architecture achieves low power by taking advantage of the typically large fraction of zero and small-valued input processing data in video and image data compression. In particular, it skips multiplication by zero and dynamically activates/deactivates required bit-slices of fine-grain bit partitioned adders within multipliers and accumulators using simple input ANDing and bit-slice MASKing. The processed results from 1-D DCT/IDCT do not have unnecessary sign extension bits (SEBs), which are used for further power reduction in matrix transposer. The results extracted by bit-level transition activity simulations indicate significant power reduction compared to conventional designs.

  • PDF

An Efficient Architecture of Transform & Quantization Module in MPEG-4 Video Codec

  • Kibum suh;Song, In-Kuen
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2067-2070
    • /
    • 2002
  • In this paper, a VLSI architecture for transform and quantization module, which consists of 2D-DCT, quantization, AC/DC prediction block, scan conversion, inverse quantization and 2D-IDCT, is presented. The architecture of the module is designed to handle a macroblock data within 1064 cycles and suitable for MPEG-4 video codec handling CIF image formats. Only single 1-D DCT/IDCT cores are used for the design instead of 2-D DCT/IDCT, respectively. 1-bit serial distributed arithmetic architecture is adopted for 1-D DCT/IDCT to reduce the hardware area in this architecture. As the result, the maximum utilization of hardware can be achieved, and power consumption can be minimized. The proposed design is operated on 27MHz clock. The experimental results show that the accuracy of DCT and IDCT meet the IEEE specification.

  • PDF

Design on Pipeline Architecture for the Low and Column Address Generator of 2D DCT/IDCT (2D DCT/IDCT의 행, 열 주소생성기를 위한 파이프라인 구조 설계)

  • 노진수;박종태;문규성;성해경;이강현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.14-18
    • /
    • 2003
  • This paper presents the pipeline architecture for the low and column address generator of 2D DCT/IDCT(Discrete Cosine Transform/Inverse Discrete Cosine Transform). For the real time process of image data, it is required that high speed operation and small size hardware In the proposed architecture, the area of hardware is reduced by using the DA(distributed arithmetic) method and applying the concepts of pipeline on the parallel architecture. As a results, the designed pipeline of the low and column address generator for 2D DCT/IDCT architecture is implemented with an efficiency and high speed compared as the non-pipeline architecture. And the operation speed is improved about 50% up. The design for the proposed pipeline architecture of DCT/IDCT is coded using VHDL.

  • PDF

A Study on the Implementation of Low Power DCT Architecture for MPEG-4 AVC (저전력 DCT를 이용한 MPEG-4 AVC 압축에 관한 연구)

  • Kim, Dong-Hoon;Seo, Sang-Jin;Park, Sang-Bong;Jin, Hyun-Joon;Park, Nho-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.371-372
    • /
    • 2007
  • In this paper we present performance and implementation comparisons of high performance two dimensional forward and inverse Discrete Cosine Transform (2D-DCT/IDCT) algorithm and low power algorithm for $8{\times}8$ 20 DCT and quantization based on partial sum and its corresponding hardware architecture for FPGA in MPEG-4. The architecture used in both low power 20 DCT and 2D IDCT is based on the conventional row-column decomposition method. The use of Fast algorithm and distributed arithmetic(DA) technique to implement the DCT/IDCT reduces the hardware complexity. The design was made using Mentor Graphics Tools for design entry and implementation. Mentor Graphics ModelSim SE6.1f was used for Verilog HDL entry, behavioral Simulation and Synthesis. The 2D DCT/IDCT consumes only 50% of the Operating Power.

  • PDF