This study focuses on three logistics-related news (Logistics Newspaper, Korea Shipping Gadget, and Korea Shipping Newspaper) in order to present changes in logistics issues, centering on Corona 19, which has recently had the greatest impact in the world. For data collection, two-year news articles in 2019 and 2020 (title, article, content, date, article classification, article URL) were collected through web crawling (using Python's BeautifulSoup, requests module) on the homepages of three representative logistics-related media companies. As for the data analysis methods, fundamental statistical analysis, Latent Dirichlet Allocation (LDA) for topic modeling, and Scattertext were performed. The analysis results were as follows. First, among the three news media related to logistics, the Korea Shipping Newspaper was carrying out the most active media activities. Second, through topic modeling with LDA, eight logistics-related topics were identified, and keywords and significant issues of each topic were presented. Third, the keywords were visually expressed through Scattertext. This is the first study to present changes in the logistics field, focusing on articles from representative logistics-related media in 2019 and 2020. In particular, 2019 and 2020 can be divided into before and after the outbreak of Corona 19, which has had a great impact not only on the logistics field but also on our lives as a whole. For future work, a multi-faceted approach is required, such as comparative studies of logistics issues between countries or presenting implications based on long-term time-series articles.