• Title/Summary/Keyword: variational inequality problem

Search Result 97, Processing Time 0.022 seconds

An Iterative Method for Equilibrium and Constrained Convex Minimization Problems

  • Yazdi, Maryam;Shabani, Mohammad Mehdi;Sababe, Saeed Hashemi
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • We are concerned with finding a common solution to an equilibrium problem associated with a bifunction, and a constrained convex minimization problem. We propose an iterative fixed point algorithm and prove that the algorithm generates a sequence strongly convergent to a common solution. The common solution is identified as the unique solution of a certain variational inequality.

HYBRID INERTIAL CONTRACTION PROJECTION METHODS EXTENDED TO VARIATIONAL INEQUALITY PROBLEMS

  • Truong, N.D.;Kim, J.K.;Anh, T.H.H.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.203-221
    • /
    • 2022
  • In this paper, we introduce new hybrid inertial contraction projection algorithms for solving variational inequality problems over the intersection of the fixed point sets of demicontractive mappings in a real Hilbert space. The proposed algorithms are based on the hybrid steepest-descent method for variational inequality problems and the inertial techniques for finding fixed points of nonexpansive mappings. Strong convergence of the iterative algorithms is proved. Several fundamental experiments are provided to illustrate computational efficiency of the given algorithm and comparison with other known algorithms

ACCELERATED STRONGLY CONVERGENT EXTRAGRADIENT ALGORITHMS TO SOLVE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REAL HILBERT SPACES

  • Nopparat Wairojjana;Nattawut Pholasa;Chainarong Khunpanuk;Nuttapol Pakkaranang
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.307-332
    • /
    • 2024
  • Two inertial extragradient-type algorithms are introduced for solving convex pseudomonotone variational inequalities with fixed point problems, where the associated mapping for the fixed point is a 𝜌-demicontractive mapping. The algorithm employs variable step sizes that are updated at each iteration, based on certain previous iterates. One notable advantage of these algorithms is their ability to operate without prior knowledge of Lipschitz-type constants and without necessitating any line search procedures. The iterative sequence constructed demonstrates strong convergence to the common solution of the variational inequality and fixed point problem under standard assumptions. In-depth numerical applications are conducted to illustrate theoretical findings and to compare the proposed algorithms with existing approaches.

A MODIFIED KRASNOSELSKII-TYPE SUBGRADIENT EXTRAGRADIENT ALGORITHM WITH INERTIAL EFFECTS FOR SOLVING VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEM

  • Araya Kheawborisut;Wongvisarut Khuangsatung
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.393-418
    • /
    • 2024
  • In this paper, we propose a new inertial subgradient extragradient algorithm with a new linesearch technique that combines the inertial subgradient extragradient algorithm and the KrasnoselskiiMann algorithm. Under some suitable conditions, we prove a weak convergence theorem of the proposed algorithm for finding a common element of the common solution set of a finitely many variational inequality problem and the fixed point set of a nonexpansive mapping in real Hilbert spaces. Moreover, using our main result, we derive some others involving systems of variational inequalities. Finally, we give some numerical examples to support our main result.

Numerical Analysis of a Class of Contact Problems Involving Friction Effects in Linear Elasticity by Finite Element Methods (有限要素法 에 의한 線型彈性體 의 特定摩擦接觸問題 에 대한 數値解析)

  • 송영준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.52-63
    • /
    • 1983
  • The purpose of the study is to find development of contact area, contact pressure and friction forces occurring at joints or connection areas inbetween structural members or mechanical parts. The problem has a pair of difficulties intrinsically; a constraint of displacement due to contact, and presence of work term by nonconservative friction force in the variational principle of the problem. Because of these difficulties, the variational principle remains in the form of inequality. It is resolved by penalty method and perturbation method making the inequality to an equality which is proper for computational purposes. A contact problem without friction is solved to find contact area and contact pressure, which are to be used as data for the analysis of the friction problem using perturbed variational principle. For numerical experiments, a Hertz problem, a rigid punch problem, and the latter one with friction effects are solved using $Q_2$-finite elements.

Hybrid Algorithms for Ky Fan Inequalities and Common Fixed Points of Demicontractive Single-valued and Quasi-nonexpansive Multi-valued Mappings

  • Onjai-uea, Nawitcha;Phuengrattana, Withun
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.703-723
    • /
    • 2019
  • In this paper, we consider a common solution of three problems in real Hilbert spaces: the Ky Fan inequality problem, the variational inequality problem and the fixed point problem for demicontractive single-valued and quasi-nonexpansive multi-valued mappings. To find the solution we present a new iterative algorithm and prove a strong convergence theorem under mild conditions. Moreover, we provide a numerical example to illustrate the convergence behavior of the proposed iterative method.

STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS, FIXED POINT PROBLEMS OF QUASI-NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITY PROBLEMS

  • Li, Meng;Sun, Qiumei;Zhou, Haiyun
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.813-823
    • /
    • 2013
  • In this paper, a new iterative algorithm involving quasi-nonexpansive mapping in Hilbert space is proposed and proved to be strongly convergent to a point which is simultaneously a fixed point of a quasi-nonexpansive mapping, a solution of an equilibrium problem and the set of solutions of a variational inequality problem. The results of the paper extend previous results, see, for instance, Takahashi and Takahashi (J Math Anal Appl 331:506-515, 2007), P.E.Maing $\acute{e}$ (Computers and Mathematics with Applications, 59: 74-79,2010) and other results in this field.

SOLVABILITY AND BOUNDEDNESS FOR GENERAL VARIATIONAL INEQUALITY PROBLEMS

  • Luo, Gui-Mei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.589-599
    • /
    • 2013
  • In this paper, we propose a sufficient condition for the existence of solutions to general variational inequality problems (GVI(K, F, $g$)). The condition is also necessary when F is a $g-P^M_*$ function. We also investigate the boundedness of the solution set of (GVI(K, F, $g$)). Furthermore, we show that when F is norm-coercive, the general complementarity problems (GCP(K, F, $g$)) has a nonempty compact solution set. Finally, we establish some existence theorems for (GNCP(K, F, $g$)).

THE SHRINKING PROJECTION METHODS FOR HEMI-RELATIVELY NONEXPANSIVE MAPPINGS, VARIATIONAL INEQUALITIES AND EQUILIBRIUM PROBLEMS

  • Wang, Zi-Ming;Kang, Mi Kwang;Cho, Yeol Je
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.191-207
    • /
    • 2013
  • In this paper, we introduce the shrinking projection method for hemi-relatively nonexpansive mappings to find a common solution of variational inequality problems and equilibrium problems in uniformly convex and uniformly smooth Banach spaces and prove some strong convergence theorems to the common solution by using the proposed method.