Acknowledgement
The second author would like to thank Rajamangala University of Technology Thanyaburi (RMUTT) under The Science, Research and Innovation Promotion Funding (TSRI) (Contract No. FRB660012/0168 and under project number FRB66E0635) for financial support.
References
- J. A. Abuchu, G. C. Ugunnadi and O. K. Narain, inertial proximal and contraction methods for solving monotone variational inclusion and fixed point problems, Nonlinear Funct. Anal. Appl., 28(1) (2023), 175-203.
- T.O. Alakoya, L.O. Jolaoso and O.T. Mewomo, Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization, 70(3) (2021), 545-574. https://doi.org/10.1080/02331934.2020.1723586
- A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities, Comput. Opti. Appl., 12 (1999), 31-40. https://doi.org/10.1023/A:1008607511915
- H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Stud., (Amsterdam: North-Holand), 5 (1973), 759-775.
- L.C. Ceng and M. Shang, Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings, Optimization, 70(4) (2021), 715-740. https://doi.org/10.1080/02331934.2019.1647203
- L.C. Ceng and Q. Yuan, Composite inertial subgradient extragradient methods for variational inequalities and fixed point problems, J. Ineq. Appl., 274 (2019).
- Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Opti. Theory Appl. 148 (2011), 318-335. https://doi.org/10.1007/s10957-010-9757-3
- W. Cholamjiak, P. Cholamjiak, and S. Suantai, An inertial forwardbackward splitting method for solving inclusion problems in Hilbert spaces, J. Fixed Point Theory Appl, 20(42) (2018).
- A. Dixit, D.R. Sahu, P. Gautam and T. Som, Convergence analysis of two-step inertial Douglas-Rachford algorithm and application, J. Appl. Math. Comput,, 68 (2022), 953-977. https://doi.org/10.1007/s12190-021-01554-5
- Y. Dong, New inertial factors of the Krasnoselski-Mann iteration, Set-Valued Var. Anal, 29 (2021), 145-161. https://doi.org/10.1007/s11228-020-00541-5
- K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
- D.V. Hieu, P.K. Anh and L.D. Muu, Strong convergence of subgradient extragradient method with regularization for solving variational inequalities, Opti. Eng., (2020), https://doi.org/10.1007/s11081-020-09540-9.
- O.S. Iyiola and Y. Shehu, New Convergence Results for Inertial KrasnoselskiiMann Iterations in Hilbert Spaces with Applications, Results Math. 76(75) (2021).
- A. Kangtunyakarn, A new iterative scheme for fixed point problems of infinite family of ki-pseudo contractive mappings, equilibrium problem, variational inequality problems, J. Glob. Optim., 56 (2013), 1543-1562. https://doi.org/10.1007/s10898-012-9925-0
- A. Kangtunyakarn, An iterative algorithm to approximate a common element of the set of common fixed points for a finite family of strict pseudo-contractions and the set of solutions for a modified system of variational inequalities, Fixed Point Theory Appl., 143 (2013).
- C. Kanzow and Y. Shehu, Generalized Krasnoselskii-Mann-type iterations for nonexpansive mappings in Hilbert spaces, Comput. Opti. Appl., 67 (2017), 595-620. https://doi.org/10.1007/s10589-017-9902-0
- A. Kheawborisut and A. Kangtunyakarn, Modified subgradient extragradient method for system of variational inclusion problem and finite family of variational inequalities problem in real Hilbert space, J Ineq. Appl., 53 (2021).
- D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, SIAM, Soc. Indust. Appl. Math.Philadelphia, 2000.
- P. Kitisak, W. Cholamjiak, D. Yambangwai and R. Jaidee, A modified parallel hybrid subgradient extragradient method for finding common solutions of variational inequality problems, Thai J. Math., 18(1),(2020), 261-274 .
- G.M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody, 12 (1976), 747-756.
- R. Lotfikar, G. Zamani Eskandani and J. K. Kim, The subgradient extragradient method for solving monotone bilevel equilibrium problems using Bregman distance, Nonlinear Funct. Anal. Appl., 28(2) (2023), 337-363.
- S. Migrski, Ch. Fang and Sh. Zeng, A new modified subgradient extragradient method for solving variational inequalities,, Applicable Analysis, 100(1) (2021), 135-144. https://doi.org/10.1080/00036811.2019.1594202
- A.E. Ofem, A.A. Mebawondu, C. Agbonkhese, G.C. Ugwunnadi and O.K. Narain, Alternated inertial relaxed Tseng method for solving fixed point and quasi-monotone variational inequality problems, Nonlinear Funct. Anal. Appl., 29(1) (2024), 13-164
- K. Saechou and A. Kangtunyakarn, The subgradient extragradient method for approximation of fixed-point problem and modification of equilibrium problem, Optimization, 72(2) (2023), 283-410. https://doi.org/10.1080/02331934.2021.1970751
- Y. Shehu, Convergence Rate Analysis of Inertial KrasnoselskiiMann Type Iteration with Applications, Nume. Funct. Anal. Opti., 39(10) (2018), 1077-1091. https://doi.org/10.1080/01630563.2018.1477799
- Y. Shehu, O.S. Iyiola and S. Reich, A modified inertial subgradient extragradient method for solving variational inequalities, Opti. Eng., 23 (2022), 421-449. https://doi.org/10.1007/s11081-020-09593-w
- Y. Shehu, O.S. Iyiola, D.V. Thong and N.T.C. Van, An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems, Math. Meth. Oper. Res., 93 (2021), 213-242. https://doi.org/10.1007/s00186-020-00730-w
- G. Stampacchia, Formes bilineaires coercitives surles ensembles convexes, C. R. Acad. Sci, 258 (1964), 4413-4416.
- B. Tan, P. Sunthrayuth, P. Cholamjiak and Y. Je Cho, Modified inertial extragradient methods for finding minimum-norm solution of the variational inequality problem with applications to optimal control problem, Int. J. Comput. Math., 100(3) (2023), 525-545. https://doi.org/10.1080/00207160.2022.2137672
- D.V. Thong, P. Cholamjiak, M.T. Rassias, Y.J. Cho, Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems, Opti. Lett., 16 (2022), 545-573. https://doi.org/10.1007/s11590-021-01734-z
- D.V. Thong and D.V. Hieu, Inertial subgradient extragradient algorithms with linesearch process for solving variational inequality problems and fixed point problems, Numer Algor., 80 (2019), 1283-1307. https://doi.org/10.1007/s11075-018-0527-x
- D.V. Thong, D.V. Hieu and T.M. Rassias, Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems, Opti. Lett., 14 (2020), 115-144 . https://doi.org/10.1007/s11590-019-01511-z
- M. Tian and M. Tong, Self-adaptive subgradient extragradient method with inertial modification for solving monotone variational inequality problems and quasi-nonexpansive fixed point problems, J. Ineq. Appl., 19 (2019).
- N. Wairojjana and N. Pakkaranang, Halpern Tseng's Extragradient Methods for Solving Variational Inequalities Involving Semistrictly Quasimonotone Operator, Nonlinear Funct. Anal. Appl., 27(1) (2022), 121-140. https://doi.org/10.22436/jmcs.027.01.04
- J. Yang, Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone variational inequalities, Applicable Anal., 100(5) (2021), 1067-1078. https://doi.org/10.1080/00036811.2019.1634257
- J. Yang, H. Liu and G. Li, Convergence of a subgradient extragradient algorithm for solving monotone variational inequalities, Numer Algor., 84 (2020), 389-405. https://doi.org/10.1007/s11075-019-00759-x
- Y. Yonghong and Postolache, Mihai and Yao, Jen-Chih, Strong convergence of an extragradient algorithm for variational inequality and fixed point problems, UPB Sci. Bull., Ser. A, 82(1) (2020), 3-12.
- Y.C. Zhang, K. Guo, and T. Wang, Generalized KrasnoselskiiMann-Type Iteration for Nonexpansive Mappings in Banach Spaces, J. Oper. Res. Soc. China, 9 (2021), 195-206. https://doi.org/10.1007/s40305-018-0235-1
- X. Zhao and Y. Yao, Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems, Optimization, 69(9) (2020), 1987-2002. https://doi.org/10.1080/02331934.2019.1711087