DOI QR코드

DOI QR Code

ON FIXED POINT THEOREMS SATISFYING COMPATIBILITY PROPERTY IN MODULAR G-METRIC SPACES

  • Daniel Francis (Functional Analysis and Optimization Research Group Laboratory (FANORG), Department of Mathematics, School of Physical Sciences, Federal University of Technology Owerri, Department of Mathematics, College of Physical and Applied Sciences, Michael Okpara University of Agriculture) ;
  • Godwin Amechi Okeke (Functional Analysis and Optimization Research Group Laboratory (FANORG), Department of Mathematics, School of Physical Sciences, Federal University of Technology Owerri) ;
  • Ho Geun Hyun (Department of Mathematics Education, Kyungnam University)
  • Received : 2023.03.03
  • Accepted : 2023.10.02
  • Published : 2024.06.15

Abstract

In this paper, a pair of ω-compatible self mappings in the setting of modular G-metric space is defined. We prove the existence and uniqueness of common fixed point of pairs of ω-compatible self mappings in a G-complete modular G-metric space. Furthermore, we give an example to justify our claims. The results established in this paper extend, improve, generalize and complement some existing results in literature.

Keywords

References

  1. M. Abbas, T. Nazir and R. Saadati, Common fixed point results for three maps in generalized metric space, Adv. Diff. Equ., 2011: 49 (2011).
  2. M. Abbas and B.E. Rhoades, Common fixed point theorems for occasionally weakly compatible mappings satisfying a generalized contractive condition, Math. Comm., 13 (2008), 295-301. https://doi.org/10.1155/2008/274793
  3. A.A.N. Abdou, Fixed points of Kannan maps in modular metric spaces, AIMS Mathematics, 5(6) (2024), doi: 10.3934/math.2020411.
  4. R.P. Agarwal and E. Karapinar, Remarks on some coupled fixed point theorems in Gmetric spaces, Fixed Point Theory Appl., 2013 (2013), 1-33. https://doi.org/10.1186/1687-1812-2013-1
  5. B. Azadifar, M. Maramaei and G. Sadeghi, On the modular G-metric spaces and fixed point theorems, J. Nonlinear. Sci. Appl., 6 (2013), 293-304. https://doi.org/10.22436/jnsa.006.04.07
  6. B. Azadifar, M. Maramaei and G. Sadeghi, Common fixed point theorems in modular G-metric spaces, J. Nonlinear Anal. Appl., 2013 (2013), Article ID:jnaa-00175, 9 pages.
  7. B. Azadifar, G. Sadeghi, R. Saadati and C. Park, Integral type contractions in modular metric spaces, J. Ineq. Appl., 2023: 483 (2013).
  8. I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst., 30 (1989), 26-37.
  9. N.P. Bali, Golden real analysis, New Delhli, 2019.
  10. B. Baskaran, C. Rajesh and S. Vijayakumar, Some results in fixed point theorems for expansive mappings in 2-Metric space, Int.. J. Pure Appl. Math., 114(6) (2017), 177-184.
  11. V.V. Chistyakov, Metric modular spaces, I basic concepts, Nonlinear Anal, Theory Meth. Appl., 72 (2010), 1-14. https://doi.org/10.1016/j.na.2009.04.057
  12. B.C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc., 84 (1992), 329-336.
  13. S. Gahler, 2-metrische Raume und ihre topologische struktur, Math. Nacher., 26 (1966), 665-667.
  14. G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9 (1986), 771-779. https://doi.org/10.1155/S0161171286000935
  15. M. Kumar, Compatible maps in G-metric spaces, Int. J. Math. Anal., 6(29) (2012), 1415-1421. https://doi.org/10.1186/2251-7456-6-71
  16. C. Mongkolkeha, W. Sintunavarat and P. Kumam, Fixed point theorem for contraction mappings in modular spaces, Fixed Point Theory Appl., 93(2011), 9 pages.
  17. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture notes in Math. Vol. 1034, Springer-verlag, Berlin. 1983.
  18. Z. Mustafa, Common Fixed Points of Weakly Compatible Mappings in G-Metric Spaces, Applied Mathematical Sciences. 6(92) (2012), 4589-4600. https://doi.org/10.1186/2251-7456-6-71
  19. Z. Mustafa, M. Khandagji and W. Shatanawi, Fixed point results on complete G-metric spaces, Studia Scientiarum Mathematicarum Hungarica, 48(3) (2011), 304-319. https://doi.org/10.1556/sscmath.48.2011.3.1170
  20. Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, Proceeding of the International Conference on Fixed Point Theory and Applications, Valencia Spain, July, (2003) 198-198.
  21. Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2) (2006), 289-297.
  22. H. Nakano, Modulared semi-ordered linear spaces, Vol 1, Maruzen, Tokyo, 1950.
  23. G.A. Okeke and D. Francis, Fixed point theorems for Geraghty-type mappings applied to solving nonlinear Volterra-Fredholm integral equations in modular G-metric spaces, Arab J. Math. Sci., 27(2) (2021), 214-234, https://doi.org/10.1108/AJMS-10-2020-0098.
  24. G.A. Okeke and D. Francis, Fixed point theorems for asymptotically T-regular mappings in preordered modular G-metric spaces applied to solving nonlinear integral equations, J. Anal., 30(2) (2022), 501-545. https://doi.org/10.1007/s41478-021-00354-1
  25. G.A. Okeke and D. Francis, Fixed point theorems for metric tower mappings in complete metric spaces, J. Anal., 2023 (2023), 1-43, https://doi.org/10.1007/s41478-023-00661-9.
  26. G.A. Okeke and D. Francis, Some common fixed point theorems in generalized modular metric spaces with applications, Scientific African, 23 (2024), e02018.
  27. G.A. Okeke, D. Francis and A. Gibali, On fixed point theorems for a class of α-v-MeirKeeler-type contraction mapping in modular extended b-metric spaces, J. Anal., 30(3) (2022), 1257-1282. https://doi.org/10.1007/s41478-022-00403-3
  28. G.A. Okeke, D. Francis and J.K. Kim, Existence and uniqueness of fixed point of some expansive-type mappings in generalized modular metric spaces, Nonlinear Func. Anal, Appl., 28(4) (2023), 957-988.
  29. G.A. Okeke, D. Francis and J.K. Kim, New proofs of some fixed point theorems for mappings satisfying Reich type contractions in modular metric spaces, Nonlinear Funct. Anal. Appl., 1(28) (2023), 1-9.
  30. G.A. Okeke, D. Francis and O.T. Mewomo, Common unique fixed point theorems for compatible mappings in modular G-metric spaces, 2023, submitted.
  31. G.A. Okeke, D. Francis, M. de la Sen and M. Abbas, Fixed point theorems in modular G-metric spaces, J. Ineq. Appl., 2021: 163 (2021), https://doi.org/10.1186/s13660-021-02695-8.
  32. G.A. Okeke, D. Francis and M. de la Sen, Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications, Heliyon, 6 (2020), e04785.
  33. G.A. Okeke and J.K. Kim, Approximation of Common Fixed Point of Three Multivalued ρ-Quasi-nonexpansive Mappings in Modular Function Spaces. Nonlinear Funct. Anal. Appl., 24(4) (2019), 651-664.
  34. W. Orlicz, Collected Papers, Vol. I, II, PWN, Warszawa, 1988.
  35. F. Ouzine, R. Azennar and D. Mentagui, A fixed point theorem on some multi-valued maps in modular spaces, Nonlinear Funct. Anal. Appl., 27(3) (2022), 641-648.
  36. H. Rahimpoor, A. Ebadian, M.E. Gordji and A. Zohri , Common fixed point theorems in modular metric spaces, Int. J. Pure Appl. Math., 3(99) (2015), 373-383. https://doi.org/10.12732/ijpam.v99i3.12
  37. R. Shrivastava, N. Jain and K. Qureshi, Compatible mapping and common fixed point theorem, IOSR J. Math.. 1(6) (2013), 46-48. https://doi.org/10.9790/5728-0714648