Acknowledgement
The authors gratefully acknowledge Qassim University, represented by the Deanship of Scientific Research, on the material support for this research under the number(4524) during the academic year 1445AH/2024AD.
References
- Z. I. Almuhiameed, Existence results for p-Laplacian problems involving singular cylindrical potential , Nonlinear Funct. Anal. Appl., 28(4) (2023), 1005-1015.
- C. Alves, F. Correa and T. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. https://doi.org/10.1016/j.camwa.2005.01.008
- K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign changing weight function, J. Diff. Equ., 2 (2003), 481-499. https://doi.org/10.1016/S0022-0396(03)00121-9
- B. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems, J. Math. Anal. Appl., 394 (2012), 488-495. https://doi.org/10.1016/j.jmaa.2012.04.025
- B. Cheng and X. Wu, Existence results of positive solutions of Krichhoff problems, Nonlinear Anal., 71 (2009), 4883-4892. https://doi.org/10.1016/j.na.2009.03.065
- M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619-4627. https://doi.org/10.1016/S0362-546X(97)00169-7
- F.J S.A. Correa, S.D.B. Menezes and J. Ferreira, On a class of problems involving a nonlocal operator, Appl. Math. Comput., 147 (2004), 475-489. https://doi.org/10.1016/S0096-3003(02)00740-3
- P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262. https://doi.org/10.1007/BF02100605
- M.E.O. El Mokhtar and A. Matallah, Existence of Multiple Positive Solutions for Brezis-Nirenberg-Type Problems Involving Singular Nonlinearities, J. Math., 2021 (2021) 1-8.
- M. Haddaoui, N. Tsouli and A. Zaki, Study of a critical 𝚽-Kirchhoff type equations in Orlicz-Sobolev spaces, Nonlinear Funct. Anal. Appl., 27(3) (2022), 641-648.
- D. Kang and S. Peng, Positive solutions for singular elliptic problems, Appl. Math. Lett., 17 (2004), 411-416. https://doi.org/10.1016/S0893-9659(04)90082-1
- C. Lei, J. Liao and C. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents, J. Math. Anal. Appl., 421 (2015), 521-538. https://doi.org/10.1016/j.jmaa.2014.07.031
- Y. Li, F. Li and J. Shi, Existence of positive solutions to Kirchhoff type problems with zero mass, J. Math. Anal. Appl., 410 (2014), 361-374. https://doi.org/10.1016/j.jmaa.2013.08.030
- J.L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations in: North-HollandMath. Stud. North-Holland. Amsterdam, 30 (1978), 284-346. https://doi.org/10.1016/S0304-0208(08)70870-3
- X. Liu and Y. Sun, Multiple positive solutions for Kirchhoff type problems with singularity, Commun. Pure Appl. Anal., 12 (2013), 721-733. https://doi.org/10.3934/cpaa.2013.12.721
- A. Mao and S. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl., 383 (2011), 239-243. https://doi.org/10.1016/j.jmaa.2011.05.021
- A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287. https://doi.org/10.1016/j.na.2008.02.011
- K. Sabri, M. El Mokhtar Ould El Mokhtar and A. Matallah, Multiple nontrivial solutions for critical p-Kirchhoff type problems in RN, Nonlinear Funct. Anal. Appl., 29(1) (2024), 35-45.
- J. Simon, Sur des equations aux derivees partielles nonlineaires, These, Paris, 1977.
- J. Sun and C. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222. https://doi.org/10.1016/j.na.2010.09.061
- S. Terracini, On positive entire solutions to a class of equations with singular coefficient and critical exponent, Adv. Diff. Equ., 1 (1996), 241-264.
- Q. Xie, X. Wu and C. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786 https://doi.org/10.3934/cpaa.2013.12.2773
- Z. Zhang and K. Perera, Sign-changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463. https://doi.org/10.1016/j.jmaa.2005.06.102