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ABSTRACT. In this paper, we consider a common solution of three problems in real Hilbert
spaces: the Ky Fan inequality problem, the variational inequality problem and the fixed
point problem for demicontractive single-valued and quasi-nonexpansive multi-valued map-
pings. To find the solution we present a new iterative algorithm and prove a strong con-
vergence theorem under mild conditions. Moreover, we provide a numerical example to
illustrate the convergence behavior of the proposed iterative method.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, and let
C be a nonempty closed convex subset of H. Let f: H x H — R be a bifunction
such that f(xz,z) =0 for all x € C. The classical Ky Fan inequality [7] consists of
finding a point z* in C such that

(1.1) f(z*,y) >0, Vy e C.

The set of solutions of problem (1.1) is denoted by Sol(f,C). In fact, the Ky Fan
inequality can be formulated as an equilibrium problem. If f(z,y) = (Az,y — ),
where A : C — H is a operator, then problem (1.1) become the following variational
inequality problem (shortly, VI(A,C)): find 2* € C such that

(1.2) (Az*,y —z*) >0, Yy e C.

The equilibrium problem which was considered as the Ky Fan inequality is very
general in the sense that it includes, as special cases, the optimization problem,
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the variational inequality problem, the complementarity problem, the saddle point
problem, the Nash equilibrium problem in noncooperative games and the Kakutani
fixed point problem, etc., see [1, 4, 5, 9, 10, 18] and the references therein. Recently,
algorithms for solving the Ky Fan inequality have been studied extensively.

In 2001, Yamada [27] proved that the sequence {z,} generated by the projected
gradient algorithm

xr € C,
(1.3)
Tnt1 = Po(z, — MNx,), Yn €N,

converges to the unique solution z* of VI(A,C) under the assumption that A is
strongly monotone and Lipschitz continuous, the mapping Po(I — AA) is strictly
contractive over C. If A is monotone and Lipschitz, the projected gradient algorithm
(1.3) may not be convergent. In order to deal with this situation, Korpelevich [15]
introduced an extragradient algorithm:

xr1 € C,
(14) Yn = PC(xn - )\Axn)a
Tn+1 = Po(z, — My,), Vn € N.

He also proved that the sequences {z,} and {y,} converge to the same solution z*
of VI(A,C) under the assumptions that A is L-Lipschitz and monotone, A € (0, %)

In 2008, the extragradient algorithm (1.4) has been extended to Ky Fan in-
equality problem by Muu et al. [17] as follows:

1’160,

1
n = argmin | Af(z,,w) + =||w — z, 2],
. o = angain Ao, 0) + 5w

1
Tpy1 = argmin {)\f(yn,z) + -]z — xn||2} , VneN.
zeC 2

Under assumptions that f is pseudomonotone and Lipschitz-type continuous, the
authors showed that the sequence {z,} converges to an element of Sol(f,C).

For obtaining a common element of set of solutions of Ky Fan inequality (1.1)
and the set of fixed points of a nonexpansive mapping 7" in a real Hilbert space H,
Anh [3] introduced an iterative algorithm by the modified viscosity approximation
method. The sequence {z,} is defined by

xleC,

1
Yn = argmin |:/\nf($naw) + 5”711 - xn|2:| ;
(1.6) weC

1
2, = argmin [Anf(yn, 2)+ =z — J]n||2:| ,
zeC 2

Tntl = anh(mn) + BnTn + ’Yn(,UTxn + (1 - ﬂ)zn)a vn €N,
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where C'is a nonempty closed convex subset of H and h is a contractive mapping of
C into itself. The author showed that under certain conditions, the sequence {x,,}
converges strongly to an element of Sol(f,C) N F(T).

Later in 2013, Vahidi et al. [24] introduced an iterative algorithm for finding a
common element of the sets of fixed points for nonexpansive multi-valued mappings,
strict pseudo-contractive single-valued mappings and the set of solutions of Ky Fan
inequality for pseudomonotone and Lipschitz-type continuous bifunctions in Hilbert
spaces.

In this paper, motivated by the research described above, we propose a new it-
erative algorithm for finding a common element of the sets of fixed points for demi-
contractive single-valued mappings, quasi-nonexpansive multi-valued mappings, the
set of solutions of Ky Fan inequality for pseudomonotone and Lipschitz-type con-
tinuous bifunctions, and the set of solutions of variational inequality for ¢-inverse
strongly monotone mappings in real Hilbert spaces. We obtain strong convergence
theorems for the sequence generated by the proposed algorithm in a real Hilbert
space. Our results generalize and improve a number of known results including the
results of Anh [3] and Vahidi et al. [24].

2. Preliminaries and Useful Lemmas

In this section, we recall some definitions and results for further use. Let C be
a nonempty closed convex subset of a real Hilbert space H. We denote the strong
convergence and the weak convergence of the sequence {z,} to a point z € H by
x, — x and x, — x, respectively. It is also known in [19] that a Hilbert space
H satisfies Opial’s condition, that is, for any sequence {x,} with z,, — =z, the
inequality

limsup ||z, — x| < limsup ||z, — y||
n—oo n—oo

holds for every y € H with y # x. Let Pc be the metric projection of H onto C
i.e., for x € H, Pox satisfies the property

T — Poz|| = min ||z — y||.
Iz ~ Peal| = min 2 - y|

Since C' is nonempty closed and convex, Poz exists and is unique. It is also known
that Pc has the following characteristic properties, see [11, 23] for more details.

Lemma 2.1. Let C' be a nonempty closed convexr subset of a real Hilbert space H
and let P : H — C be the metric projection. Then

(i) forallz e C,y€ H,
lz = Peyll® + | Poy — ylI* < |z — ylI*;
(ii) Pox =y if and only if there holds the inequality

(x —y,y—2) >0, VzeC.
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Lemma 2.2.([23]) Let C be a nonempty closed convex subset of a Hilbert space H
and let A be a mapping of C into H. Let u € C. Then for n > 0,

u=Pc(I—nAusuecVIA/C).

Definition 2.3.([13]) A mapping A : C — H is called d-inverse strongly monotone
if there exists a positive real number § such that

(x —y, Az — Ay) > §|| Az — Ay|?, Va,y € C.

We now give some concepts of the monotonicity of a bifunction.

Definition 2.4. Let H be a real Hilbert space, C' be a nonempty closed convex
subset of H, and let f: H x H — R be a bifunction. A bifunction f is said to be:

(i) strongly monotone on C' if there exists a constant a > 0 such that
f@.y) + fly,2) < —ale —y|?, Yo,y e C;
(ii) monotone on C if
f(@y) + fy,2) <0, Va,y € C;
(iii) pseudomonotone on C' if

flz,y) > 0= f(y,z) <0, Va,y € C;

(iv) Lipschitz-type continuous on C if there exist two positive constants ¢; and ¢y
such that

f(xuy) +f(yvz) > f(ZL',Z) - Cle _y||2 _CQHy _2”2? Vﬂf»yvz eC.

From the definition above we obviously have the following implications: (1)
It is clear that (i) = (ii) = (iii), (2) If f(z,y) = (®(z),y — z) for a mapping
® : H — H. Then the notions of monotonicity of bifunction f collapse to the
notions of monotonicity of mapping @, respectively. In addition, if mapping ® is
L-Lipschitz on C, i.e., ||®(x) — ®(y)|| < L||z — y|| for all x,y € C. Then, f is also
Lipschitz-type continuous on C, for example, with constants L; = 2%, Ly = %, for
any € > 0.

Definition 2.5. Let H be a real Hilbert space, and let f : H x H — R be
a bifunction. For each z € H, by 9f(z,u) we denote the subdifferential of the
function f(z,-) at u, i.e.,

Of(z,u)={€€ H: f(z,t) — f(z,u) > (,,t —u), Vt € H}.
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Definition 2.6. Let H be a real Hilbert space and C' be a nonempty closed convex
subset of H. The normal cone of C at v € C' is defined by

Ne(w)={z€ H:(z,y—v) <0,VyeC}.

Lemma 2.7.([6]) Let H be a real Hilbert space, C' be a nonempty closed convex
subset of H, and f : H x H — R be a bifunction. For each z € H, suppose
that f(z,-) is subdifferentiable on C. Then x* is a solution to the following convex
problem:

min{f(z,z) : z € C'}

if and only if 0 € Of(z,2*) + No(z*), where f(z,-) denotes the subdifferential of
f(z,+) and Ne(x*) is the normal cone of C at z* € C.

Lemma 2.8.([2, 17]) Let H be a real Hilbert space, C be a nonempty closed convex
subset of H, and let f : H x H — R be a pseudomonotone and Lipschitz-type
continuous bifunction. For each x € C, let f(x,-) be convexr and subdifferentiable
on C. Let {x,},{zn}, and {w,} be the sequences generated by x1 € C and by

. 1
wy, = argmin {/\nf(:cn,w) + —fjJw— xn|2} ,
welC 2

. 1
Zp = argmin |:/\nf(wna Z) + 7”'2 - mnHQ] .
zeC 2

Then for each x* € Sol(f,C),

(2.1) |lzn —2*|]® < [|lzn —2*]]® = (1 = 22ne1) |20 — wnll® = (1= 2Xne2) | wn — 24||°, Vn € N.

A mapping h : C — C' is a contraction if there exists a constant 1 € (0,1) such
that ||h(z) — h(y)|| < ||z — y| for all z,y € C. Let T : C — C be a single-valued
mapping. An element x € C is said to be a fized point of T if x = Tx. The fixed
point set of T is denoted by F(T) = {x € C : x = Tz}. A single-valued mapping T'
is called strictly pseudononspreading [20] if there exists k € [0,1) such that, for all
z,y € C,

|72 = Tyl < le — y|2 + k|| = T)x — (I — T)y|> + 2(x — T,y — T),

where I denotes the identity mapping. Note that if £ = 0, a mapping T is called
nonspreading [14]. As a generalization of the class of strictly pseudononspread-
ing mappings, the class of demicontractive mappings was introduced by Hicks and
Kubicek [12] in 1977.

Recall that a single-valued mapping T is said to be demicontractive if F(T) # ()
and there exists x € [0, 1) such that, for all z € C and for all z € F(T),

1Tz — 2| < |lv — 2|* + slle — Ta||*.
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We call & the contraction coefficient. Clearly, strictly pseudononspreading mapping
with a nonempty fixed point set is demicontractive.
We now give two examples for the class of demicontractive mappings.

Example 2.9. Let H be the real line and C' = [0, 1]. Define a mapping T': C' — C

by
4 1
Ty ?xsin (x) , x#0,

0, z=0.

Obviously, F(T) = {0}. Also, for all z € C, we have [Tz — T0*> = |Tz|* =
dusin (L) 2 < |22 < [#]? < |2 — 02 + k|z — Tz|? for all k € [0,1). Therefore, T
is demicontractive.

Example 2.10. Let H be the real line and C = [—1, 1]. Define a mapping T : C' —

C by
9—zx

, z€[-1,0),
Tx = :(_)9
x
1].
0 x €10,1]

Obviously, F(T) = {1} and T is demicontractive.

The following lemma obtained by Suantai and Phuengrattana [22] is useful for
our results.

Lemma 2.11. Let H be a Hilbert space and C be a nonempty closed convex subset
of H. Let T : C — C be a demicontractive mapping with contraction coefficient k.
Then, the following hold:

() F(T) = F(Pe(I - u(I —T))) for all > 0;
(ii) Poc(I — p(I —T)) is quasi-nonexpansive, for all u € (0,1 — k.

The set C of H is called proximinal if for each x € H there exists z € C' such
that
| = 2| = inf{||z —y|| : y € C} = dist(z, C).

It is clear that every nonempty closed convex subset of a real Hilbert space is
proximinal. We denote by CB(C) and KC(C) the families of all nonempty closed
bounded subsets, and nonempty compact convex subsets of C, respectively. The
Pompeiu-Hausdorff metric H on CB(C) is defined by

H(A, B) := max {sup dist(z, B), sup dist(y, A)} , VA, B € CB(C).
z€A yeB

Let S : C — CB(C) be a multi-valued mapping. An element z € C is said to be a
fized point of S if x € Sx. The fixed point set of S is denoted by F(S) ={z € C:
x € Sx}.
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Definition 2.12. A multi-valued mapping S : C — CB(C) is said to
(i) be nonezpansive if H(Sz,Sy) < ||z —y| for all z,y € C;

(ii) be quasi-nonezpansive if F(S) # 0 and H(Sxz,Sz) < ||z — 2| for all x € C
and z € F(S);

(iil) satisfy condition (E,,) if there exists p > 1 such that for each z,y € C,

dist(z, Sy) < pdist(z, Sx) + ||z — y||.
We say that S satisfies condition (E) whenever S satisfies (E,) for some p > 1.

From the above definitions, it is clear that:
(i) if S is nonexpansive, then T satisfies the condition (Ey);
(ii) if C is compact, then S is hemicompact.

We now give an example for the class of quasi-nonexpansiveness multi-valued
mapping satisfying the condition (E).

Example 2.13. Let C' = [0,00) and S : C — CB(C) be defined by
T x
Sx = [1, 5} for all x € C.

Then S is quasi-nonexpansive and satisfies condition (E).

Although the condition (E) implies the quasi-nonexpansiveness for single-valued
mappings, but it is not true for multi-valued mappings as the following example.

Example 2.14.([25]) Let C' = [0,00) and S : C'— C'B(C) be defined by
Sz = [z,2z] for all z € C.

Then S satisfies condition (E) and is not quasi-nonexpansive.

Notice also that the classes of (multi-valued) quasi-nonexpansive mappings and
mappings satisfying condition (E) are different (see Examples 2.15).

Example 2.15.([8]) Let C'=[—1,1] and S : C — CB(C') be defined by
o {%msin(%)} if % 0;
{0} if z=0.
Then S is quasi-nonexpansive and does not satisfy condition (E).

Lemma 2.16.([16]) Let {t,} be a sequence of real numbers such that there exists
a subsequence {n;} of {n} such that t,, < tn,41 for all i € N. Then there exists
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a nondecreasing sequence {T(n)} C N such that 7(n) — oo, and the following
properties are satisfied by all (sufficiently large) numbers n € N:

trn) S lrm)+1y tn < trgn)t1
In fact,

7(n) = max{k <n:tp <tptp1}
Lemma 2.17.([23]) In Hilbert space H, the following inequality holds:

lz +yl* < 2 + 2{y, = +v), Yo,y € H.

Lemma 2.18.([28]) Let H be a Hilbert space. Let x1,xo,..., 2y € H and
ay,Q,...,ay be real numbers in [0,1] such that Zf\il o; = 1. Then,

2

N
E Q; T4
i=1

N

2 2

=Y ailall® = Y aiay llai -l
i=1

1<i,j<N

Lemma 2.19.([26]) Let {a,} be a sequence of nonnegative real numbers, let {by}
be a sequence in (0,1) with > 7 b, = oo, let {d,} be a sequence of nonnegative
real numbers with Y > | d,, < 0o, and let {c,} be a sequence of real numbers with
lim sup,, . ¢n < 0. Suppose that the following inequality holds:

ant1 < (1 =bp)an + bpey +dn, VneN.

Then lim,,_ o a,, = 0.

3. Main Results

In this section, we show strong convergence theorems for the sequence generated
by the hybrid algorithm (3.1) based on extragradient algorithm which solve the
problem of finding of four sets, i.e., F(T'), F|(S), Sol(f,C), and VI(B,C).

Now, let C' be a nonempty, closed and convex subset of a real Hilbert space H
and f: H x H— R be a bifunction such that f(z,z) =0, for all z € C. In order
to find a point in F(T) N F(S) N Sol(f,C) NVI(B,C) # 0, we make use of the
following blanket assumptions:

Assumptions A

(A1) f is monotone on C;

(A2) F is Lipschitz-type continuous on C' with constants ¢; > 0 and ¢z > 0;
(A3) f(z,-) is convex and subdifferentiable on C, for all z € C;
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(A4) f is jointly weakly continuous on C' x C in the sense that, if z,y € C and
{zn},{yn} C C converge weakly to z and y, respectively, then f(z,,y,) —
flz,y) as n — 0.

We are now in a position to prove our main results.

Theorem 3.1. Let H be a real Hilbert space and C' be a nonempty closed convez
subset of H. Let f be a bifunction satisfying assumptions A on C, T : C — C
be a demicontractive single-valued mapping with contraction coefficient k, S : C —
KC(C) be a quasi-nonexpansive multi-valued mapping satisfying the condition (E),
and B : C — H be a d-inverse strongly monotone mapping. Assume that F =
F(T)YNF(S)NSol(f,C)NVI(B,C)# 0 and Sp={p} forallpe F. Let h:C — C
be a k-contraction. For xy € C, let {zn}, {yn}, {#n}, and {w,} be sequences
generated by

1
w, = argmin {)\nf(zn,w) + —|jw— xn|2} ,
welC 2

. 1
(3.1) Zp = argimin )‘nf(U}TH Z) + 7”2 - xn”2 )
zeC 2

Tnt1 = oph(zy) + (1 — 0n)yn, Vn €N,
where u, € Szn and {an}, {Bn}, {1}, {Gu}s {on}, {n}, {nn}, and {An} satisfy

the following conditions:
(C1) {on} C(0,1), limy oo 0y, =0, Y00 | 0y = 00;

C2) {An} Cla,b] C (0, 1), where L = max{2ci,2cs};

(
(C3) pin € (0,1 — K] with lim, o0 1y, = 0;
(C4) ny, € [d, €] for some d,e € (0,20) and for all n € N;

(C5) 0<a<anBnYm . <b<land ap+ Bn+vn+C =1 foralln € N.

Then the sequence {x,} converges strongly to q € F, which solves the variational
inequality
(¢—N(a),x—q) 20, Vz €T

Proof. Let Q = Py and it easy to see that Qh is contraction. By the Banach
contraction principle, there exists ¢ € F such that ¢ = (Qh)(q). Applying Lemma
2.8, we have

(32) |lzn — QH2 <lzn — QHQ — (1 =2 .c1)l|wn — wn”2 — (1 =2X\nc2)||wn — Zn||2-
This implies that

(3.3) lzn = all < llzn —ql-
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Since S is quasi-nonexpansive and Sq = {q}, by (3.3), we have
(3.4) [un — gl = dist(un, Sq) < H(Szn, Sq) < [lzn — gl < llzn — -
By Lemma 2.11(ii), Po(I — pn (I —=T)) is quasi-nonexpansive for all n € N. It implies
by Po(I — pn(I —T))g = g and (3.3) that
(3.5) [1Pc(I = pn(I = T))zn = ql| < |20 —all < [lzn — ql|-
Let 2,y € C. Since B is d-inverse strongly monotone, by condition (C4), we have
|1Po(I = noB)x — Po(I =0y B)y|? < (I = nuB)z — (I — 1, B)y|?
= |l = yl* = 2na(z — y, Bz — By)
+ 11| Bz — Byl|?
< |lz = ylI* — 2.9 Bx — Byl|?
+1, || Bx — Byl|?
= |lz = ylI* = 1.(26 — 1) || Bz — By||?
< |l — ylI* - d(26 — ¢)|| Bz — By||?
<l —yl*.
This shows that Po(I—n,B) is nonexpansive for all n € N. Thus, by Pc(I—n,B)q =
g and (3.3), we have
(3.0 I1Pe(r —mB)zn —al < llzn —ll < llz — .
From (3.3)-(3.6), we get that

yn — all = llonzn + Bnun + W Po(l — pn(l = T))zn + GuPo(l — 1.B)zn — ||
< apllzn = qll + Bullun — gll + vl Pl — pn(I = T))zn — 4|
+ Gl Pe(I = mnB)2zn — 4|
< (an + Bn + Y + Go) | — 4l
(3.7) = llzn —dll-
Consequently,

[Zn+1 —ql = llonh(zn) + (1 — on)yn — 4
< onlh(zn) —all + (1 = on)llyn — 4|l
< o ([[h(@n) = h(@)l + (@) = qll) + (1 = on) |20 — gl
< on([Ih(zn) = R + [I7(g) = all) + (1 = o0)l|lzn — gl
< onkllzn — qll + onllh(q) — gl + (1 — op)llzn — ql|
= (1= on(l = k)llzn — gl + onllh(q) — 4l

h _
< max{ o —all AL
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By induction, we get

ha) —
lzn — ¢l Smax{”m —q||,”(1(1)kq||}, Vn € N.

This implies that {x,} is bounded, and we also obtain that {u,}, {zn}, {yn} and
{h(z,)} are bounded.
By Lemma 2.18, (3.1), (3.2), and (3.3), we obtain that

lyn = all* < anllzn =l + Bullun — al® + 7l Pe(I — (I = T))zn — gf?
+ Gl Pe(I — mnB)zy — Q||2 — anfBnllzn — Un||2
— anYnllzn — Po(I — pn(I — T))Zn||2
— anCall2n = Po(I =10 B)zall = Banllun = Po(I = pn(I = T))2nl|*
= Banlltn = Pol =1 B)za|®
= YnCnllPe(I = pn(I = T))zn — Po(I — nnB)ZnHQ
< apllzn — Q||2 + Bullzn — Q||2 + Ynllzn — Q||2
+ Gnllzn — QHZ — anfnllzn — unH2
— anyullzn — Po(I = (I = T))zal® = anGallzn — Po(I = 0 B)za?
= Bavnllun — Po(l — pn(I — T))ZnH2 = BnCallun — Po(I — nnB)ZnHQ
= YnCnl[Pe(I — pn(I = T))z — Po(I — nnB)ZnHQ
— (1= 2X\ne1) |0 — wall? — an (1 — 2Xc2) |wp — 25 ||?
< @ — Q||2 — anBnllzn — un”2 — anYnllzn — Po(I — pn (I — T))Zn||2
— anCnllzn — Po(I — nnB)Zn||2 Bravnllun — Po(l — pn(I — T))ZnH2
= BuCallun — Po(I — 77nB>Zn||
— YnCnllPe(I — pn(I = T))zn — Po(I — nnB)ZnH2
(3.8) — (1 = 2X\ne1) |0 — wall? — an(1 = 2X\e2) Jwn — 2|2
Consequently, utilizing (3.8), we conclude that
[#n1 = all* < onllh(zn) = all* + (1 = o) llyn — all?
< opl|h(zn) — q”2 + (1 —on)llzn — q”2 — (1= on)anBullzn — un”2
— (I =on)anynllzn — Po(I — pn(I — T))Zn||2
— (1= op)anlallzn — Po(I — 0, B) 2z |2
= (1= 03)Bavnlltn — Po(I — pn(I — T))Zn||2
= (1= 04)BnCnllun — Po(I - nnB)Zn”z
— (1= 00)¥GallPo(I = pn(I = T))z — Po(I = 112 B) 2>
— (1 = on)an(l = 2Xe1) ||z — wy|?
—( )

1 —op)an (1 — 2 ,c2)||wn — 242
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Therefore, we have
(3.10) (1= on)anfallzn = unll® < llzn = l* = |2ns1 = ql* + onl|A(zs) - gl*.

In order to prove that x,, — q as n — oo, we have consider the following two cases.

Case 1. Suppose that there exists ng such that {||z, — ¢||} is nonincreasing, for all
n > ng. Boundedness of {||z, — ¢||} implies that {||z, — ¢||} is convergent. Since
{h(xy)} is bounded and o, — 0 as n — oo, from (3.10) and condition (C5), we
obtain that

(3.11) nl;rr;o |z, — unll = 0.

By (3.9), we have

(1 = on)an¥nllzn — Po(I — pn(I — T))Zn||2 < |z — (I||2 — [|Tng1 — Q||2
+ onllh(zn) — qll*.

This implies by conditions (C1) and (C5) that

(3.12) lim ||z, — Po(I — pn(I = T))zn|| = 0.
n—oQ

By similar argument we can obtain that

(3.13) ILIH Hzn - PC(I - nnB)ZnH =0,
(3.14) lim |2, —wyl| =0, lim [jw, — 2z, =0.
n— oo n—00

Also, by (3.14), we have
(3.15) lzn — znll < ||l2n — wall + ||wn — 2] = 0, as n — oco.
Next, we will show that

limsup(h(q) — q,xn, —q) <0

n— oo

where ¢ = Qh(q). To show this inequality, take a subsequence {z,,} of {z,} such
that
limsup(h(q) — g, 2, — ¢) = lim (h(q) — ¢, zpn, — q)-
n—o0 71— 00

Without loss of generality, we may assume that x,, — =* as ¢ — oo where z* € C.
Since ||zp, — zn,;|| = 0 as @ — oo, we have z,, — z*. We will show that z* € .
Assume z* ¢ F(T). From Lemma 2.11(i), we have that a* € F(Po(I — pin,(I=T)))
for all ¢ € N. That is * # Po(I — pn, (I — T))x*. By Opial’s property, condition
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(C3), and (3.12), we have
liminf ||z, — 2*|| < liminf ||z,, — Po(I — pn, (I = T))z"||
11— 00 71— 00
— timninf (20, — Po(T = jin, (T = T)) |
71— 00

FIPeT — pa, (I = T))z0, — Pell = o, (I~ T))a")
< liminf (|20, = Pe(I = pin, (I = 7))z, |
11— 00

Hllzn, — 2"l + pn (L = T)zp, — (I = T)z")

< liminf ||z, —z*||.
71— 00

This is a contradiction. Then z* € F(T).

Since Sz* is compact and convex, for all ¢ € N, we can choose ¢,, € Sz*
such that ||z, — gn,|| = dist(zn,, Sz*) and the sequence {g¢,,} has a convergent
subsequence {g,, } with limg_0 g, = ¢ € Sz*. By condition (E), there exists
@ > 1 such that

dist(zp,, Sz*) < pdist(zn,, Szn,) + ||2n; — 27|

Suppose that ¢ # x*. Since z,, — z*, it follows by the Opial’s condition and (3.11)
that

limsup || zp, — 2| < limsup ||z, — ||
k—o00 k—o0

< limsup([[zn, = gny || + [lgn, — all)

k—o0
= lim sup(dist(zp, , Sx*) + ||gn, — ql)

k—o0

< hmsuP(UdiSt(ana Sznk) + Hznk - $*|| + ank - QH)

k—o0

< limsup(pl[zn, = wn [l + 20, = 27 + llgn, = all)

k— o0
= limsup ||z, — 2"

k—oc0

This is a contradiction. Then z* € F(S).

Assume z* ¢ VI(B,C). From Lemma 2.2, we have that «* ¢ F(Pc(I —n,B))
for all n € N. That is * # Po(I — n,B)z*. Now, since z,, — z*, it follows by
(3.13) and Opial’s property that

liminf ||z, — || < liminf ||z,, — Po(I — nn, B)z™||
11— 00 71— 00
= liminf (|[2n, — Po(I — 1, B)zn, ||
11— 00
+[Pe(I =1, B)zn, — Po(I —nn, B)x™||)
< liminf (|2, = Po(I = mn, B)zn, || + [[2n, — 27])
1—00

= liminf||z,, — z

I
17— 00
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This is a contradiction. Then z* € VI(B,C).
It follows from Lemma 2.7 and f(z,-) is convex on C for each € C, we see
that

. 1
Wy, = argmin |:)\nf(xn>y) + 7Hy - :L'n“z]
yeC 2

if and only if

1
0eo ()\nf(xn,wn) + §||wn — mn||2) + Ne(wy),

where N¢(wy,) is the normal cone of C' at w,, € C. Then there exists v € 9 f (2, wy,)
and u,, € No(wy,) such that

0=M\v+w, —x,+ Uy.

Using successively the definition of the normal cone to C' at w,, and the subdifferen-
tial of the convex function f(z,,-) at w,, we can write the following two inequalities

<wn _xnay_wn> > /\n<vawn —Z/>7 Yy e C,

and
f('rnvy) - f(mn,wn) Z <U7y - wn>7 ye c
Thus, we have

)‘n(f(xnvy) - f(xnawn)) > <wn = Tp, Wn — y>? RS C.

Hence

1
(316) f('rnmy) - f(xnwwm) > T<wm = Tn;, Wny — y>7 Yy e C.

Uz

Since lim; o0 ||Tn, — wy,|| = 0, we have w,, — z*. Passing to the limit in the
inequality (3.16) as ¢ — oo and using the hypothesis (44) and (C2), we obtain
f(z*,y) > 0 for all y € C. This implies that z* € Sol(f,C) and hence 2* € F. Since
g = (Qh)(q) and z* € F, it follows that

lim sup(h(q) — q, 2, — q) = lim (h(q) — ¢, zn, — q) = (h(q) — ¢, " — q) < 0.

n—o00 i—00
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By using Lemma 2.17 and (3.7), we have

[#n41 = all* = llonh(zn) + (1 = o0)yn — ql®

<X =00)(yn = DII* + 200 (h(2n) — ¢, Tnt1 — q)

< (1= 00)?lyn — all* + 200 (h(zn) = M(q), 21 — q)
+ 200 (h(q) — ¢, Tnt1 — q)

<(1- Un)QHxn - QHQ + 205kl 20 — qlll|Tns1 — 4l
+ 200 (h(q) — ¢, Tnt1 — Q)

< (1= 00)?llzn — all® + onk(llzn — all® + [€n41 — all®)
+ 200 (h(q) — ¢, Tnt1 — q)

=((1- Jn)Q + opk)||zn — QH2 + opkllTne — CIH2
+ 200 (h(q) — ¢, Tnt1 — q)

=(1—onk —20,(1 k) + Oi)”xn - Q||2 + onkllTnyr — q“2
+20,(h(q) — ¢, Tnt1 — q)-

This implies that

2(1 —k)o, — U?L 20,
lan+1 = ql* < (1 - (1_)C,k> l2n — qlf* + (M(q) = ¢, &ni1 —q).
n

1—o0,k
_ _ 2
Putting b, = 2(11?# and ¢, = 2(1T2)_Un<h(q) — ¢,Znt+1 — ¢), we have
Yoo 1 by = 00 and limsup,,_, ., ¢, < 0. Hence, by Lemma 2.19, we conclude the the

sequence {z,} converge strongly to gq.

Case 2. Assume that there exists a subsequence {x,,} of {z,} such that
||xnl - q” < ||mni+1 - q||7

for all ¢ € N. In this case from Lemma 2.16, there exists a nondecreasing sequence
{7(n)} of N for all n > ng, for some ng large enough, such that 7(n) — oo as
n — oo, and the following inequalities hold for all n > ng,

[2r@m) = all <Nz =l llen =l < ll2r@m)41 =gl

From (3.10), we have lim,, oo ||2-(n) — Ur(n)|| = 0, and similarly we obtain

Jim. l2r(n) — Po(I = prny(I = T)) 2yl = 0,
lim ||2-(n) — Po(I = 07y B)zr ()l = 0,

n—oo
nlggo er(n) — Wr(n) | =0, nlingo er(n) - ZT(n)H =0.

Following an argument similar to that in Case 1, we have

lim [,y — gl =0, lim [|z,(uy40 — gl = 0.

n—oo
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Thus, by Lemma 2.16, we have
0 < flzn — gl < max {[lz) = all, |20 — all} < 2741 —all-

Therefore, the sequence {z,} converges strongly to ¢ € F. O

Recall that a multi-valued mapping S : C C H — CB(C) is said to satisfy
Condition (A) if ||x — p|| = dist(x, Sp) for all z € H and p € F(S); see [21]. We see
that S satisfies Condition (A) if and only if Sp = {p} for all p € F(S). Then the
following result can be obtained from Theorem 3.1 immediately.

Theorem 3.2. Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. Let [ be a bifunction satisfying assumptions A on C, T : C —
C be a demicontractive single-valued mapping with contraction coefficient k, S :
C — KC(C) be a quasi-nonexpansive multi-valued mapping satisfying the condition
(E), and B : C — H be a d-inverse strongly monotone mapping. Assume that
F=FT)NFS)NSol(f,C)NVI(B,C) # 0 and S satisfies Condition (A). Let
h: C — C be a k-contraction. For z1 € C, let {zn}, {yn}, {2n}, and {w,} be
generated by (3.1), where {an}, {Bu}, {m}, {CGu}s {on}, {un}s {mn}, and {\n}
satisfy the following conditions:

(C1) {on} C (0,1), limy oo 0y, =0, Y07 | 0 = 0;

(C2) {A\n} Cla,b] C (0, 1), where L = max{2ci,2c2};

(C3) pn € (0,1 — K] with limy, o0 ftn, = 0;

(C4) n, € [d,e] for some d,e € (0,25) and for all n € N;

(C5) 0<a<ap BV <b<land an+ Bn+ Y0+ (=1 for alln € N.

Then the sequence {x,} converges strongly to ¢ € F, which solves the variational
inequality
(qfh(q),qu> 205 Vo €.

Remark 3.3.

(1) Theorems 3.1 and 3.2 extends based on the work of Anh [3] and Vahidi et
al. [24], that is, we present a hybrid algorithm for finding a common ele-
ment of the sets of fixed points for demicontractive single-valued mappings,
quasi-nonexpansive multi-valued mappings, the set of solutions of an equilib-
rium problem for a pseudomonotone, Lipschitz-type continuous bifunctions
and variational inequality for ¢-inverse strongly monotone mappings in real
Hilbert spaces.

(2) It is know that the class of demicontractive single-valued mappings contains
the classes of nonexpansive single-valued mappings, nonspreading single-
valued mappings, quasi-nonexpansive single-valued mappings, and strictly
pseudononspreading single-valued mappings. Thus, Theorems 3.1 and 3.2
can be applied to these classes of mappings.
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4. Application to Variational Inequalities

In this section, we discuss about an application of Theorem 3.1 to finding a com-
mon element of the set of fixed points for demicontractive single-valued mappings
and quasi-nonexpansive multi-valued mappings and the set of solutions of varia-
tional inequalities for ¢-inverse strongly monotone and monotone Lipschitz-type
continuous mappings.

We consider the particular Ky Fan inequality, corresponding to the bifunction
f, defined by f(z,y) = (Az,y — ) for all x,y € C with A : C — H. Then, the
solution w,, in algorithm (3.1) can be expressed as

1
wy, = argmin | A, f(Zn, w) + =||jw — xnﬂ
weC 2

1
= argmin | A, (Az,, w — x,) + §||w - xn||2]

weC
1 2 A 2
= argmin §||w — (zn — \Azy)||* — 7\\Axn||
weC |

(1
= argmin |- ||w — (z, — >\nA$n)|2}
weC _2
= Po(xn — MAxy).

Also, the solution z, can be expressed as

[ 1
zp = argmin | A, f(wn, 2) + = ||z — :Un||2]
zeC L 2

[ 1
= argmin |\, (Awy, z — wy) + §||z - xn|2}

zeC L
. [1 s A2 2
=argmin | =[]z — (x, — AMpAwy)||* — 2| Aw, || — M (Awy,, wy — x4)
zeC _2 2
. [1 9
= argmin | = ||z — (x5, — ApAw,)||
zeC 2

= Po(x, — A Awy,).

Let A be L-Lipschitz-type continuous on C, that is ||[Az — Ay|| < L|jx — y|| for all
z,y € C. Then, for z,y, z € C, we have

—[|Az — Aylllly — =[]
—Llz —yllly — =l

(AVARLYS

L L
> —5”37 —y|I? - 5”2/ —z||%.

Therefore, f is Lipschitz-type continuous on C with ¢; = ¢o = %
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Now, using Theorem 3.1, we obtain the following strong convergence theorem for
finding a common element of the set of common fixed points of a quasi-nonexpansive
multi-valued mapping and a demicontractive single-valued mapping and the solution
set of two variational inequalities.

Theorem 4.1. Let H be a real Hilbert space and C be a nonempty closed con-
vex subset of H. Let A : C — H be a monotone and L-Lipschitz-type continuous
function, T : C — C be a demicontractive single-valued mapping with contraction
coefficient k, S : C — KC(C) be a quasi-nonexpansive multi-valued mapping satis-
fying the condition (E), and B : C — H be a d-inverse strongly monotone mapping.
Assume that F = F(T)N F(S)NVIA,C)NVI(B,C) # 0 and Sp = {p} for all
p€F. Let h: C — C be a k-contraction. For z1 € C, let {x,}, {yn}, {zn}, and
{wn} be sequences generated by

wy, = Po(z, — M\ Axy,),

2n = Po(x, — A Awy,),

Yn = Qp2p + Bnun + ’YnPC<I - Mn(l - T)>Zn + CnPC(I - nnB)Zna

Tnt1 = onh(zn) + (1 — 0p)yn, Vn €N,

where u, € Sz, and {an}, {Bn}, {1}, {Cn}; {on}; {tn}, {0}, and {\.} satisfy
the following conditions:

(C1) {o,} C (0,1), limy, oo 0, =0, > 00| 0y = 00;

(C2) {An} Cla,b] C (0, 1), where L = max{2cy,2c2};

(C3) pn € (0,1 — K] with lim, o0 1y, = 0;

(C4) n, €[d, €] for some d,e € (0,25) and for all n € N;

(C5) 0<a<ap,BnYnC <b<land ap+ Bn+ Y0+ (=1 for alln € N.

Then the sequence {x,} converges strongly to q € F, which solves the variational
inequality
(g—Nh(g),z—q) >0, Vo €T,

5. Numerical Example

In this section, we give an example which shows numerical experiment for sup-
porting our main results.

Example 5.1. Let H be a real line with the Euclidean norm and C' = [0, 10]. For
all z € C, we define mappings T, S, B, h on C as follows:

4 : 1
_ [ gwsin(y), x#0, :[E q o,
T {o, v=0, = gl Bregp =g

For each z,y € C, define the bifunction f by f(x,y) = (Az,y — ), where Az = £.
Let {zy}, {yn}, {2n}, and {w,} be generated by (3.1), where u,, = %, o, =
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3n Cni]-* 2n n 3n

B8, = —n _ _ _ on = L _ 1
n = Ton+3> Tn = Bont1 Sntl _ 10nt3 _ 50n+1 In = p32 Hn = s

Nn = 4, and A\, = 2. It can be observed that all the assumptions of Theorem 3.1
are satisfied and F(T) N F(S) N Sol(f,C)NVI(B,C) = {0}. By using SciLab, we
compute the iterates of (3.1) for the initial point 1 = 9. The numerical experiment’s
results of our iteration for approximating the point 0 are given in Table 1.

Table 1: Numerical results of Example 5.1 for the algorithm (3.1)

Tn Wn, Zn Yn |xn - xn71|
9.0000000 5.4000000 6.8400000 5.4263101 -
5.1175401 3.0705240 3.8893305 3.1146764 | 3.8825e+00
2.9756998 1.7854199 2.2615319 1.8204432 2.1418e+00
1.7539246 1.0523547 1.3329827 1.0770736 1.2218e4-00
1.0437217 0.6262330 0.7932285 0.6427364 7.1020e-01

[S2 SO JUR OIS

20 | 0.0005792 0.0003475 0.0004402 0.0003575 3.6920e-04

31 | 0.0000027 0.0000016 0.0000020 0.0000017 1.6776e-06
32 | 0.0000016 0.0000010 0.0000012 0.0000010 1.0298e-06
33 | 0.0000010 0.0000006 0.0000008 0.0000006 6.3427e-07
34 | 0.0000006 0.0000004 0.0000005 0.0000004 3.8953e-07
35 | 0.0000004 0.0000002 0.0000003 0.0000002 2.3928e-07

Remark 5.2. Table 1 shows that the sequences {z,}, {yn}, {2z}, and {w,}
converge to a unique point 0, where {0} = F(T) N F(S) N Sol(f,C)NVI(B,C).
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