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SOLVABILITY AND BOUNDEDNESS FOR GENERAL

VARIATIONAL INEQUALITY PROBLEMS

Gui-Mei Luo

Abstract. In this paper, we propose a sufficient condition for the exis-
tence of solutions to general variational inequality problems (GV I(K,F ,
g)). The condition is also necessary when F is a g-PM

∗ function. We
also investigate the boundedness of the solution set of (GV I(K,F, g)).
Furthermore, we show that when F is norm-coercive, the general com-
plementarity problems (GCP (K,F, g)) has a nonempty compact solution
set. Finally, we establish some existence theorems for (GNCP (K,F, g)).

1. Introduction

The finite-dimensional general variational inequality problem (GV I(K,F ,
g)), introduced by Noor [14], is to find a vector x∗ ∈ ℜn, such that g(x∗) ∈ K
and

(1.1) F (x∗)T (y − g(x∗)) ≥ 0, ∀y ∈ K,

whereK is a closed convex subset of ℜn, F and g are mappings fromK into ℜn.
When K is a cone, problem (1.1) is called a general complementarity problem,
denoted by GCP (K,F, g), which is equivalent to finding a vector x∗ ∈ ℜn such
that

(1.2) g(x∗) ∈ K, F (x∗) ∈ K∗ and g(x∗)TF (x∗) = 0,

where K∗ ≡ {z ∈ ℜn : zTx ≥ 0, ∀x ∈ K} is the dual cone of K. If K = ℜn
+ (the

nonnegative orthant of ℜn), then GCP (K,F, g) is called a general nonlinear
complementarity problem, denoted by GNCP (K,F, g):

(1.3) g(x∗) ≥ 0, F (x∗) ≥ 0 and g(x∗)TF (x∗) = 0.

In particular, when g ≡ I, the identity operator, problems (1.1)-(1.3) reduce
to the standard variational inequality problem (V I(K,F )), complementarity
problem (CP (K,F )) and nonlinear complementarity problem (NCP (K,F )),
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respectively. V I(K,F ) and CP (K,F ) have been extensively studied since the
mid-1960s and have been developed into a very fruitful discipline with rich
theoretical results and numerical algorithms (see e.g., [1, 3, 5, 6, 7, 8, 9, 10, 12]
and references therein). We refer to [6] for a good review in the progress of
V I(K,F ) and CP (K,F ).

Since Noor [14] introduced the general variational inequality problem of odd-
order obstacle problems, the general variational inequality problem theory has
been extended to nonsymmetric, odd-order free, moving, unilateral and equi-
librium problems arising in elasticity, transportation, circuit analysis, finance,
economics and operations research etc. (see [2, 4, 8, 24, 11, 19, 21, 22, 23] and
references therein). They have been developed many numerical methods for
general variational inequality problems. We refer to [16, 18] for a good review.
The study on the theory of general variational inequality problems has also
taken good progress. Under the assumption that functions F and g are locally
Lipschitz continuous, Pang and Yao [20] provided some sufficient conditions
for the existence of solution to GV I(K,F, g) by means of Fréchet approximate
Jacobian matrix. Luc and Noor [13] proved the local uniqueness of the so-
lution of GV I(K,F, g), in which the local Lipschitz restriction was removed.
Noor [15] established the equivalence between problem GV I(K,F, g) and the
Wiener-Hopf equation. Xiu [21] showed the equivalence between GV I(K,F, g)
and the tangent projection equation. Recently, using a projection technique,
Noor [17] established the equivalence between the extended general variational
inequalities and the general nonlinear projection equation. In this paper, we
further study the existence and boundedness of the solution of GV I(K,F, g)
and GCP (K,F, g). The results obtained in the paper can be regarded as exten-
sions of those obtained in [3, 25, 26] to general variational inequality problems.
The major contributions of the paper are listed as follows.

We give a necessary and sufficient condition for a general variational in-
equality problem with g-PM

∗ function to have a solution. Since g-PM
∗ function

contains pseudo-monotone function and P0 function as special cases, the nec-
essary and sufficient condition given in this paper is extensions of Theorems
2.3.4 and 3.5.11 in [3].

Under the condition that F is strictly feasible and quasi-g-PM
∗ , we obtain

the nonemptiness of the solution set for GNCP (K,F, g). The solution set for
GNCP (K,F, g) is nonempty and compact if F is strictly feasible and strictly
quasi-g-PM

∗ .
The paper is organized as follows. Section 2 establishes sufficient and neces-

sary conditions for the existence of the solution to the GV I(K,F, g) by using
a g-PM

∗ function. Section 3 focuses on the boundedness of the solution set of
the GCP (K,F, g) and GNCP (K,F, g).
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2. Existence and boundedness of the solution set to GV I(K, F, g)

In this section, we first derive a necessary and sufficient condition for the
existence of the solution to GV I(K,F, g). To this end, we need some useful
lemmas.

The following lemma comes from [14].

Lemma 2.1. Let K be a closed convex subset in ℜn. Let F and g be contin-

uous mappings from K into ℜn. Then x∗ is a solution to the GV I(K,F, g) if

and only if g(x∗) = PK(g(x∗) − F (x∗)), where PK(·) denotes the orthogonal

projection operator on the convex set K.

Remark 2.1. If we define Fnat
K,g (x) = g(x)−PK(g(x)−F (x)) as the natural map

of the triple (K,F, g), then Lemma 2.1 is equivalent to saying that x solves the
GV I(K,F, g) if and only if Fnat

K,g(x) = 0. If g ≡ I, Lemma 2.1 reduces to

Proposition 1.5.8 in [3].

The following lemma comes from [3].

Lemma 2.2. Let D be an open bounded subset in ℜn. Assume that F : D → ℜn

is continuous. If y ∈ ℜn, y /∈ F (∂D) and deg(F,D, y) 6= 0, then F (x) = y has

a solution in D.

By the use of Lemmas 2.1 and 2.2, it is not difficult to prove the following
lemma.

Lemma 2.3. Let K ⊆ ℜn be closed and convex and F : U ⊇ K → ℜn be

continuous on an open set U . Let Fnat
K,g denote the natural mapping of the

triple (K,F, g). If there exists a bounded open set D such that D ⊆ U and

deg(Fnat
K,g , D) is well defined and nonzero, then the GV I(K,F, g) has a solution

in D.

We introduce another lemma from [3].

Lemma 2.4. Let D be an open bounded subset in ℜn, F and G be two contin-

uous functions from D into ℜn. Define the homotopy H(x, t) by

H(x, t) = tG(x) + (1− t)F (x), 0 ≤ t ≤ 1.

Let y be an arbitrary point in ℜn. If y /∈ {H(x, t) : x ∈ ∂D, t ∈ [0, 1]}, then

deg(G,D, y) = deg(F,D, y).

In this section, we consider the problem (1.1) with K ⊆ ℜn given by

(2.1) K = ΠN
ν=1Kν ,

where N is a positive integer and each Kν is a subset of ℜnν with
∑N

ν=1 nν =
n. Consistent with this structure of K, we write ℜn = ΠN

ν=1ℜ
nν and g =

(g1, g2, . . . , gN ), where gν is a mapping from Kν into ℜnν , ν = 1, . . . , N .
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Theorem 2.1. Let K be a closed convex subset of ℜn defined by (2.1). Let

F be a continuous mapping from K into ℜn and g be a continuous injective

mapping from K into ℜn. Consider the following three statements.

(a) There exists an x∗ ∈ ℜn such that g(x∗) ∈ K and the set

L′
< ≡ {x ∈ ℜn : g(x) ∈ K, (gν(x)−gν(x

∗))TFν(x) < 0, ∀ν s.t. gν(x) 6= gν(x
∗)}

is bounded.

(b) There exist a bounded open subset D ⊆ ℜn and a vector x∗ ∈ ℜn with

g(x∗) ∈ D ∩K such that for every x ∈ ℜn with g(x) ∈ K ∩ ∂D, there exists a

ν satisfying gν(x
∗) 6= gν(x) and (gν(x)− gν(x

∗))TFν(x) ≥ 0.
(c) The GV I(K,F, g) has a solution.

It holds that (a)⇒(b)⇒(c). Moreover, if the set

L′
≤ ≡ {x ∈ ℜn : g(x) ∈ K, max

1≤ν≤N
(gν(x) − gν(x

∗))TFν(x) ≤ 0},

which contains L′
<, is bounded, then the GV I(K,F, g) has a nonempty and

compact solution set SOL(K,F, g).

Proof. The proof of the relations among (a), (b) and (c) and the existence of
the solution is similar to the proof of Proposition 3.5.1 in [3]. We only show
the compactness of the solution set SOL(K,F, g).

For any x ∈ SOL(K,F, g), it is clear that g(x) ∈ K and (y − g(x))TF (x) ≥
0, ∀y ∈ K. Define y = (yν′) ∈ K by

yν′ =

{

gν(x
∗), if ν = ν′,

gν(x), if ν 6= ν′.

Then we obtain

(gν(x) − gν(x
∗))TFν(x) ≤ 0, ∀ν.

This implies x ∈ L′
≤. It is easy to show the closedness of the set SOL(K,F, g).

�

Theorem 2.1 extends Proposition 3.5.1 in [3] (where g ≡ I). In what follows,
we investigate the equivalence among (a), (b) and (c) under mild conditions.
To this end, we introduce the following definition.

Definition 2.1. Let K be a closed convex subset of ℜn, and F and g be
mappings from K into ℜn. F is said to be

(a) a g-P0 function onK if for any x, y ∈ ℜn satisfying g(x), g(y) ∈ K, g(x) 6=
g(y), there exists ν ∈ {1, 2, . . . , N} such that gν(x) 6= gν(y) and

(gν(x) − gν(y))
T (Fν(x) − Fν(y)) ≥ 0;

(b) a g-pseudo-monotone function on K if for any x, y ∈ ℜn satisfying g(x),
g(y) ∈ K, g(x) 6= g(y),

(g(x)− g(y))TF (y) ≥ 0 =⇒ (g(x)− g(y))TF (x) ≥ 0;
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(c) a g-PM
∗ function on K if there exists a constant τ ≥ 0 such that for

any x, y ∈ ℜn with g(x), g(y) ∈ K, g(x) 6= g(y), there exists ν ∈ {1, 2, . . . , N}
satisfying gν(x) 6= gν(y) and

(2.2) (gν(x)− gν(y))
TFν(y)− τ max

1≤ν≤N
(gν(x) − gν(y))

T (Fν(x) − Fν(y)) ≥ 0

implies (gν(x)− gν(y))
TFν(x) ≥ 0.

(d) a quasi-g-PM
∗ function on K if (2.2) is replaced by

(2.3) (g(x)− g(y))TF (y)− τ max
1≤i≤n

(gi(x) − gi(y))
T (Fi(x) − Fi(y)) > 0.

(e) a strictly quasi-g-PM
∗ function on K if

(g(x)− g(y))TF (y)− τ max
1≤ν≤N

(gν(x)− gν(y))
T (Fν(x)− Fν(y)) > 0

implies
(g(x) − g(y))TF (x) > 0.

(f) a g-P function on K if for any x, y ∈ ℜn satisfies g(x), g(y) ∈ K,
g(x) 6= g(y),

max
1≤ν≤N

(gν(x) − gν(y))
T (Fν(x) − Fν(y)) > 0.

(g) a g-ξ-P function on K for some ξ > 1 if there exists a constant µ > 0
such that for any x, y ∈ ℜn satisfying g(x), g(y) ∈ K, g(x) 6= g(y),

max
1≤ν≤N

(gν(x)− gν(y))
T (Fν(x)− Fν(y)) ≥ µ‖g(x)− g(y)‖ξ.

A particular case of the g-ξ-P function is the g-2-P function. It is called a
uniformly g-P function.

Remark 2.2. (1) If g ≡ I, then (a)-(e) reduce to the definitions of P0, pseudo-
monotone, PM

∗ (quasi-PM
∗ , strictly quasi-PM

∗ ), P and ξ-P functions, respec-
tively (see [3, 25, 26]).

(2) It is easy to see that a g-P0 function must be a g-PM
∗ function. In fact,

for a g-P0 function F , there exists ν ∈ {1, 2, . . . , N} such that

(gν(x) − gν(y))
T (Fν(x) − Fν(y)) ≥ 0.

This implies
max

1≤ν≤N
(gν(x) − gν(y))

T (Fν(x) − Fν(y)) ≥ 0.

Therefore, we get

(gν(x) − gν(y))
TFν(x) ≥ (gν(x) − gν(y))

TFν(y)

≥ τ max
1≤ν≤N

(gν(x) − gν(y))
T (Fν(x)− Fν(y))

≥ 0.

It is obvious that a g-pseudo-monotone function must be a g-PM
∗ function.

The following theorem establishes the equivalence among (a), (b) and (c).
It can be proved in a way similar to the proof of Theorem 3.5.11 in [3].
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Theorem 2.2. Let the conditions in Theorem 2.1 be satisfied. If F is a g-PM
∗

function, then the conditions (a), (b) and (c) in Theorem 2.1 are equivalent.

Remark 2.3. Since a g-P0 function must be a g-PM
∗ function and g can be any

continuous injective function, Theorem 2.2 is an extension of Theorem 3.5.11
in [3]. In fact, if we let g ≡ I and F be a P0 function, Theorem 2.2 reduces
to Theorem 3.5.11 in [3]. Similarly, Theorem 2.2 can also be viewed as an
extension of Theorem 2.3.4 in [3], since a pseudo-monotone function must be a
g-PM

∗ function.

Theorem 2.3. Let the conditions in Theorem 2.1 be satisfied. If F is a g-ξ-P
function and g satisfies ‖g(x)‖ → ∞ as ‖x‖ → ∞, then the GV I(K,F,G) has

a unique solution.

Proof. We first show that L′
≤ must be bounded for all x∗ ∈ ℜn with g(x∗) ∈ K.

Suppose on the contrary that there exists an x∗ ∈ ℜn such that g(x∗) ∈ K and

L′
≤ ≡ {x ∈ ℜn : g(x) ∈ K, max

1≤ν≤N
(gν(x)− gν(x

∗))TFν(x) ≤ 0}

is unbounded. This means that L′
≤ contains an unbounded sequence {xk}.

Since xk ∈ L′
≤, ∀k, we have

(2.4) g(xk) ∈ K and (gν(x
k)− gν(x

∗))TFν(x
k) ≤ 0, ∀1 ≤ ν ≤ N, ∀k.

Taking into account that F is a g-ξ-P function, there exists a ν̄ ∈ {1, 2, . . .,
N} such that

(2.5) (gν̄(x
k)− gν̄(x

∗))T (Fν̄(x
k)− Fν̄(x

∗)) ≥ µ‖g(x)− g(x∗)‖ξ.

Combining (2.4) with (2.5), we obtain

0 ≥ Fν̄(x
k)T (gν̄(x

k)− gν̄(x
∗))

= (Fν̄(x
k)− Fν̄(x

∗))T (gν̄(x
k)− gν̄(x

∗)) + Fν̄(x
∗)T (gν̄(x

k)− gν̄(x
∗))

≥ µ‖g(xk)− g(x∗)‖ξ − ‖gν̄(x
k)− gν̄(x

∗)‖ · ‖Fν̄(x
∗)‖

≥ µ‖g(xk)− g(x∗)‖ξ − ‖g(xk)− g(x∗)‖ · ‖Fν̄(x
∗)‖

= ‖g(xk)− g(x∗)‖(µ‖g(xk)− g(x∗)‖ξ−1 − ‖Fν̄(x
∗)‖).

Letting k → ∞, then the right-hand side tends to +∞ since ξ > 1. This yields
a contradiction. Consequently, L′

≤ is bounded. It then follows from Theorem

2.1 that the GV I(K,F, g) has a nonempty and compact solution set.
We are going to show the uniqueness of the solution set. Suppose that

there exist two distinct solutions x1 and x2. We define for each index ν ∈
{1, 2, . . . , N}, the vector y = (yν′) ∈ K by

yν′ =

{

gν(x1), if ν = ν′,
gν(x2), if ν 6= ν′.

It is clear that

0 ≤ (y − g(x2))
TF (x2) = (gν(x1)− gν(x2))

TFν(x2).
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Similarly, we have
0 ≤ (gν(x2)− gν(x1))

TFν(x1).

Adding these two inequalities, we obtain

(gν(x1)− gν(x2))
T (Fν(x1)− Fν(x2)) ≤ 0, ∀ν = 1, . . . , N.

This contradicts the g-ξ-P property of F . The complete is complete. �

Remark 2.4. Since a g-ξ-P function includes a uniform g-P function, the above
result is an extension of Proposition 3.5.10 in [3] (where g ≡ I).

3. Boundedness of the solution set to GCP (K,F, g)

In this section, we investigate the boundedness of the solution set toGCP (K,
F, g), where K is a closed convex cone in ℜn. First, in a way similar to the
proofs of Theorem 2.6.1 and Corollary 2.6.2 in [3], it is not difficult to establish
the following proposition.

Proposition 3.1. Let K be a closed convex cone in ℜn. Let F be a continuous

mapping from K into ℜn and g be an injective continuous mapping from K into

ℜn. Then either the GCP (K,F, g) has a solution or there exist an unbounded

sequence {xk} and a positive sequence {τk} such that

K ∋ g(xk) ⊥ F (xk) + τkg(x
k) ∈ K∗, ∀k.

By the use of Proposition 3.1, we can establish the following theorem.

Theorem 3.1. Let the conditions in Proposition 3.1 be satisfied. Suppose that

there exists a vector d ∈ ℜn such that

(3.1) g(x)T (F (x) − d) ≥ 0, ∀g(x) ∈ K,

and that the natural map Fnat
K,g(x) is norm-coercive on K, that is,

(3.2) lim
g(x)∈K,‖x‖→∞

‖Fnat
K,g(x)‖ = ∞.

Then the GCP (K, q+F, g) has a nonempty compact solution set for all q ∈ ℜn.

Proof. Since the solution set coincides with the set of zeros of Fnat
K,g(x), the

boundedness of the solution set follows from (3.2) immediately. The closedness
of the solution set is also obvious. In what follows, we verify the nonemptiness
of the solution set. Consider the case q = 0. For the sake of contradiction, we
suppose that the solution set SOL(K,F, g) is empty. By Proposition 3.1, there
exist an unbounded sequence {xk} and a positive sequence {τk} such that

(3.3) K ∋ g(xk) ⊥ F (xk) + τkg(x
k) ∈ K∗, ∀k.

This implies

(3.4) PK(g(xk)− (F (xk) + τkg(x
k))) = g(xk), ∀k.

It follows from (3.1) and (3.3) that

0 ≤ g(xk)T (F (xk)− d)
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= g(xk)T (F (xk) + τkg(x
k)− τkg(x

k)− d)

= −τk‖g(x
k)‖2 − g(xk)T d.

So, we get

τk‖g(x
k)‖2 ≤ −g(xk)Td ≤ ‖g(xk)‖ · ‖d‖,

which implies

(3.5) τk‖g(x
k)‖ ≤ ‖d‖, ∀k.

On the other hand, by (3.2) and (3.4), we have

∞ = lim
k→+∞

‖Fnat
K,g(x

k)‖

= lim
k→+∞

‖g(xk)− PK(g(xk)− F (xk))‖

= lim
k→+∞

‖PK(g(xk)− (F (xk) + τkg(x
k)))− PK(g(xk)− F (xk))‖

≤ lim
k→+∞

‖τkg(x
k)‖

≤ ‖d‖,

where the first inequality follows from the nonexpansive property of the pro-
jection operator. The last inequality yields a contradiction. Consequently, the
set SOL(K,F, g) is not empty.

Consider the case q 6= 0. It suffices to verify that the function g(x) −
PK(g(x) − F (x)− q) is norm-coercive on K. Indeed, we have

lim
g(x)∈K,‖x‖→∞

‖g(x)− PK(g(x)− F (x) − q)‖

= lim
g(x)∈K,‖x‖→∞

‖g(x)− PK(g(x)− F (x)) + PK(g(x)− F (x))

− PK(g(x)− F (x)− q)‖

≥ lim
g(x)∈K,‖x‖→∞

‖g(x)− PK(g(x)− F (x))‖

− lim
g(x)∈K,‖x‖→∞

‖PK(g(x) − F (x))− PK(g(x)− F (x)− q)‖

≥ lim
g(x)∈K,‖x‖→∞

‖Fnat
K,g(x)‖ − lim

g(x)∈K,‖x‖→∞
‖q‖

= lim
g(x)∈K,‖x‖→∞

‖Fnat
K,g(x)‖ − ‖q‖

= ∞.

The proof is complete. �

Remark 3.1. Theorem 3.1 extends Corollary 2.6.4 in [3] in two-folds. First the
problem here is GCP (K,F, g) which is an extension of the problem CP (K,F ).
Second the condition (3.1) is weaker than the condition in [3].

The following theorem gives another condition to guarantee the boundedness
of the solution set for GCP (K,F, g). It is an improvement of Theorem 3.1.
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Theorem 3.2. Let the conditions in Proposition 3.1 be satisfied. Suppose that

there is a vector d ∈ ℜn such that inequality (3.1) and

(3.6) lim inf
g(x)∈K,‖x‖→∞

‖Fnat
K,g(x)‖ > ‖d‖

hold. Then the GCP (K,F, g) has a nonempty compact solution set.

Proof. Obviously, the solution set must be bounded and closed by (3.6). We
only need to show that the solution set of GCP (K,F, g) is nonempty. Suppose
that the GCP (K,F, g) has no solution. Similarly as in the proof in Theorem
3.1, we can obtain (3.4) and (3.5). Therefore, we get from (3.6), (3.4) and (3.5),

‖d‖ < lim inf
k→+∞

‖Fnat
K,g(x)‖

= lim inf
k→+∞

‖g(xk)− PK(g(xk)− F (xk))‖

= lim inf
k→+∞

‖PK(g(xk)− (F (xk) + τkg(x
k))) − PK(g(xk)− F (xk))‖

≤ lim inf
k→+∞

‖τkg(x
k)‖

≤ ‖d‖.

The last inequality yields a contradiction. Consequently, the solution set of
GCP (K,F,G) is not empty. �

The remainder of the paper is devoted to the existence of the solution to the
general nonlinear complementary problem GNCP (K,F, g). We first introduce
the following definition.

Definition 3.1. A mapping F is said to be g-proper at some point x∗ with
g(x∗) ∈ K if the set

{x ∈ ℜn : g(x) ∈ K, (g(x)− g(x∗))TF (x∗) ≤ 0}

is bounded.

Theorem 3.3. Let the conditions in Proposition 3.1 be satisfied. Suppose that

g satisfies ‖g(x)‖ → ∞ as ‖x‖ → ∞, and that F is a quasi-g-PM
∗ function. If

GNCP (K,F, g) is strictly feasible, then it has a solution.

Proof. Let x∗ be a strictly feasible point. That is, it satisfies g(x∗) ≥ 0 and
F (x∗) > 0. It suffices to show that L< is bounded at x∗.

Suppose on the contrary that L< is nonempty and unbounded. Then there
exists a sequence {xk} ⊆ L< with ‖xk‖ → ∞. By the definition of L′

<, we

obviously have g(xk) ≥ 0 for all k. Since F (x∗) > 0 and ‖g(xk)‖ → ∞ as
k → ∞, we claim

(g(xk)− g(x∗))TF (x∗) → +∞ as k → ∞.

Therefore, inequality (2.3) holds with τ = 0 for k sufficiently large. Notice that
F is a quasi-g-PM

∗ function, we have

(3.7) (g(xk)− g(x∗))TF (xk) ≥ 0
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for k sufficiently large. This yields a contraction with xk 6∈ L<. Consequently,
the GNCP (K,F, g) has a solution. �

Remark 3.2. Theorem 3.3 is an extension of Theorem 3.1 in [26] where g ≡ I.

If the quasi-g-PM
∗ function is replaced by the strictly quasi-g-PM

∗ func-
tion in the last theorem, it is not difficult to show that the solution set of
GNCP (K,F, g) is nonempty and compact. We state the related theorem as
follows but omit the proof.

Theorem 3.4. Let the conditions in Proposition 3.1 be satisfied. Suppose that

g satisfies ‖g(x)‖ → ∞ as ‖x‖ → ∞ and that F is a strictly quasi-g-PM
∗

function. If GNCP (K,F, g) is strictly feasible, then it has a nonempty and

compact solution set.

4. Conclusion

In our work, we provided some necessary or sufficient conditions for a gen-
eral variational inequality problem to have a solution. At the same time, we
considered the structure of the solution set under different conditions. In our
future work, we may study the sensitivity analysis of the associated dynami-
cal system related to the general variational inequalities, or extend the general
variational inequality problem to multi-valued and system of extended general
variational inequalities, or investigate the applications of general variational
inequality problem such as equilibrium theory and engineering etc..
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