DOI QR코드

DOI QR Code

STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS, FIXED POINT PROBLEMS OF QUASI-NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITY PROBLEMS

  • Li, Meng (Department of Mathematics, Ordnance Engineering College) ;
  • Sun, Qiumei (Department of Mathematics, Ordnance Engineering College) ;
  • Zhou, Haiyun (Department of Mathematics, Ordnance Engineering College)
  • Received : 2012.07.10
  • Accepted : 2013.01.13
  • Published : 2013.09.30

Abstract

In this paper, a new iterative algorithm involving quasi-nonexpansive mapping in Hilbert space is proposed and proved to be strongly convergent to a point which is simultaneously a fixed point of a quasi-nonexpansive mapping, a solution of an equilibrium problem and the set of solutions of a variational inequality problem. The results of the paper extend previous results, see, for instance, Takahashi and Takahashi (J Math Anal Appl 331:506-515, 2007), P.E.Maing $\acute{e}$ (Computers and Mathematics with Applications, 59: 74-79,2010) and other results in this field.

Keywords

References

  1. P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlin-ear Convex Anal. 6 (2005), 117-136.
  2. A. Moudafi and M. Thera, Proximal and Dynamical Approaches to Equilibrium Problems, Lecture Notes in Economics and Mathemaical Systems,Springer, New York 477 (1999),187-201.
  3. X. Qin, Y.J. Cho and S.M. Kang, Convergence theorems of common elements for equilib-rium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009), 20-30. https://doi.org/10.1016/j.cam.2008.06.011
  4. X. Qin, M. Shang and Y. Su, Strong convergence of a general iterative algorithm for equi-librium problems and variational inequality problems, Math. Comput. Model. 48 (2008), 1033-1046. https://doi.org/10.1016/j.mcm.2007.12.008
  5. X. Qin, M. Shang and Y. Su, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, Nonlinear Anal. 69 (2008), 3897-3909. https://doi.org/10.1016/j.na.2007.10.025
  6. A.Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem, J. Optim. Theory Appl. 133 (2007),359-370. https://doi.org/10.1007/s10957-007-9187-z
  7. Y.Su, M. Shang and X. Qin, An iterative method of solution for equilbrium and optimization problems, Nonlinear Anal. 69 (2008), 2709-2719. https://doi.org/10.1016/j.na.2007.08.045
  8. S.Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces,J. Math. Anal. Appl.331 (2007), 506-515. https://doi.org/10.1016/j.jmaa.2006.08.036
  9. P.L.Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces,J. Nonlinear Convex Anal.6 (2005), 117-136
  10. X.Qin, S.Y. Cho and S.M. Kang, Iterative algorithms for variational inequality and equi-librium problems with applications, J. Glob. Optim. (2010), doi: 10.1007/s10898-009-9498-8
  11. Z.Wang, X.Qin,Z.Gu, and Y.Su, Strong convergence theorems for a family non-expansive mappings and application to generalized mixed equilibrium problems systems, J. Appl. Math. Comput. (2010), doi: 10.1007/sl2190-010-0416-5
  12. A.Chinchuluun, P.M.Pardalos,A. Migdalas, L.Pitsoulis, (eds.):Pareto Optimality, Game Theory and Equilibria, Springer, Berlin(2008).
  13. F.Giannessi, A. Maugeri and P.M. Pardalos, (eds.):Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Nonlinear Anal. 58 (2002), ISBN 978-1-4020-0161-1.
  14. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama (2000).
  15. A. Moudafi, Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl. 241 (2000), 46-55. https://doi.org/10.1006/jmaa.1999.6615
  16. P.E.Maing e, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Computers and Mathematics with Applications. 59 (2010),74-79. https://doi.org/10.1016/j.camwa.2009.09.003
  17. H.K. Xu, An iterative approach to quadratic aptimiztion, J. Optim. Theory Appl. 116 (2003), 659-678. https://doi.org/10.1023/A:1023073621589