• 제목/요약/키워드: underactuated manipulator

검색결과 15건 처리시간 0.022초

Sliding Mode Control for a Robot Manipulator with Passive Joints

  • Kim, Won;Shin, Jin-Ho;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.78-83
    • /
    • 2002
  • In this paper, we propose a sliding mode controller for a robot manipulator with passive joints. A robot manipulator with passive joints which are not equipped with any actuators is a kind of underactuated system. Underactuated systems have some advantages compared to fully-actuated ones. For example, they weigh less and consume less energy because they have smaller number of components than fully-actuated ones. However the control of an underactuated manipulator is much more difficult than that of fully- actuated robot manipulator. In this paper a complex dynamic model of a manipulator with passive joints is manipulated for sliding mode control. Sliding mode controllers are designed for this complex system and the stability of the controllers is proved mathematically. Finally a simulation for this control system is executed for evaluating the effectiveness of the designed sliding mode controller.

작동기가 불충분한 매니퓰레이터의 진동적 제어 (Vibrational control of an underactuated mechanical system)

  • Lee, Kang-Ryeol;Hong, Keum-Shik;Lee, Kyo-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.151-154
    • /
    • 1997
  • An open loop vibrational control of underactuated mechanical systems with amplitude and frequency modulations is investigated. The underactuated systems considered in the paper are assumed to have free joints with no brake. The active joints are positioned first by a linearizing control, and then periodic oscillatory inputs are applied to them to move the remaining free joints to their desired states. A systematic way of obtaining averaged systems for the underactuated systems with oscillatory vibrations is developed. A complete solution to the open loop control strategy in terms of determining amplitudes and frequencies for general system is still under investigation. However, a specific control design for 2R manipulator which is obtained the averaging system is demonstrated.

  • PDF

비구동관절을 가진 기계시스템의 가진제어: 평균화해석을 통한 제어기의 설계 (Vibrational Control of an Underactuated Mechanical System: Control Design through Averaging Analysis)

  • 홍금식;양경진
    • 제어로봇시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.385-393
    • /
    • 1999
  • An open loop vibrational control for an underactuated mechanical system with amplitude and frequently modulation is investigated. Since there is no direct external input to an unactuated joint, the dynamic coupling between the actuated and unactuated joints is utilized for controlling the unactuated joint. Feedback linearization has been performed to incorporate fully the known nonlinearities of the underactuated system considered. The actuated joints are firstly positioned to their desired locations, and the periodic oscillatory inputs are applied to the actuated joints to move the remaining unactuated joints to their target positions. The amplitudes and frequencies of the vibrations introduced are determined through averaging analysis. A systematic way of obtaining an averaged system for the underactuated system via a coordinate transformation is developed. A control design example of 2R planer manipulator with a free joint with no brake is provided.

  • PDF

불충분한 작동기를 가진 기계시스템의 진동적제어: 평균화기법을 통한 제어 설계 (Vibrational Control of an Underactuated Mechanical System : Control Design Using the Averaging Method)

  • 이강렬;홍금식;이교일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.534-537
    • /
    • 1995
  • An open loop vibrational control of underactuated mechanical system with amplitude and frequency modulations is investigated. The underactuated systems sonsidered in the paper are assumed to have free joints with no brake. The active joints are positioned first by a linearizing control, and then periodic oscillatory input are applied to them to move the remaining free joints to their desired states. A systematic way of obtaining averaged systems for the underactuated systems with oscillatory vibration is developed. A complete solution to the open loop control strateegy in terms of determining amplitudes and frequencies for general system is still under investigation. However, a specific control design for 2R manipulator which is obtained through the averaged system is demonstrated.

  • PDF

수동 관절을 가진 로봇 매니퓰레이터를 위한 퍼지 슬라이딩 모드 기법을 이용한 제어기 (Fuzzy Sliding Mode Controller for a Robot Manipulator with Passive Joints)

  • 김원;김민성;신진호;이주장
    • 조명전기설비학회논문지
    • /
    • 제13권1호
    • /
    • pp.31-38
    • /
    • 1999
  • 본 논문에서는 수동 관절을 지니는 로봇 매니퓰레이터의 제어를 위하여 퍼지 슬라이딩 모드 기법을 제안하였다. 구동기가 정착되어 있지 않은 수동 관절을 지니는 로봇 매니퓰레이터는 언더액츄에이티트(Underactuated) 시스템의 일종이며 이러한 매니퓰레이터의 제어에 비해 어려운 측면이 있다. 여기서는 불확실성 및 외란이 존재하는 매니퓰레이터 시스템에 대하여 퍼지 슬라이딩 모드 제어를 적용함으로써, 불확실성을 극복하며 채터링 현상이 없는 제어가 가능함을 시뮬레이션을 통해 확인하였다.

  • PDF

비구동 관절을 가지는 매니퓰레이터의 동력학과 운동제어 (Dynamics and motion control of an underactuated manipulator)

  • 유기호
    • 제어로봇시스템학회논문지
    • /
    • 제3권5호
    • /
    • pp.476-481
    • /
    • 1997
  • 본 논문에서는 비구동 관절을 가지는 2링크 매니퓰레이터의 동력학 해석과 운동제어를 제1적분을 기초로 하여 전개하고 있다. 매니퓰레이터의 운동이 제1적분의 적분상수에 의해서 기술되는 것을 보이고, 제1적분을 이용하여 매니퓰레이터의 동력학을 해석하고 있다. 그리고 해석된 동력학을 적극적으로 이용하는 운동제어 알고리즘을 구성하고 시뮬레이션을 통하여 확인하고 있다. 끝으로 비구동 관절에 마찰이 작용하는 경우, 브레이크등의 보조수단을 이용하지 않고도 매니퓰레이터의 제어가 가능함을 보이고 있다.

  • PDF

형상기억합금 Underactuated 로봇 핸드의 설계에 관한 연구 (A Study on Design of Underactuated Robot Hand driven by Shape Memory Alloy)

  • 김광호;신상호;정상화
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.51-57
    • /
    • 2011
  • The lightweight and compact actuator with high power is required to perform motion with multiple degrees of freedom. To reduce the size and inertia of a robot manipulator, the mechanical transmission system is used. The shape memory alloy(SMA) is similar to the muscle-tendon-bone network of a human hand. However, there are some drawback and nonlinearity, such as the hysteresis and the stress dependence. In this paper, the design of the underactuated robot hand is studied. The 3-finger dexterous hand is driven by the SMA actuator using segmental mechanism. This digital approach enables to overcome the nonlinearity of SMA wire. The translational displacement of SMA actuator required to bend a phalanx of the underactuated robot hand is estimated and the bending angle of the underactuated robot hand according to input displacement of SMA actuator is predicted by the multi-body dynamic analysis.

Obstacle Avoidance of Three-DOE Underactuated Manipulator by Using Switching Computed Torque Method

  • Udawatta, Lanka;Watanabe, Keigo;Izumi, Kiyotaka;Kiguchi, Kazuo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.347-355
    • /
    • 2002
  • Obstacle avoidance of underactuated robot manipulators using switching computed torque method (SCTM) is presented. One fundamental feature of this novel method is to use partly stable controllers (PSCs) in order to fulfill the ultimate control objective. Here, we use genetic algorithms (GAs) to acquire the optimum switching sequence of the control actions for a given time frame with the available set of elemental controllers, depending on which links/variables are controlled. The effectiveness of the concept is illustrated by taking a three-degrees-of-freedom (DOF) manipulator and showing enhanced performance of the proposed control methodology.

불충분한 작동기를 가진 매니퓰레이터의 비선형제어 (Nonlinear Control of Residual Say of a Container Crane in the Perspective of Controlling an Underactuated System)

  • 김영민;홍금식;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.249-252
    • /
    • 1997
  • In this paper the sway-control problem of a container crane is investigated in the perspective of controlling an underactuated mechanical system. For fast loading/unloading of containers from the ship, quick suppression of the remaining swing motion of the container at the end of each trolley stroke is crucial. Known nonlinearities are fully incorporated by feedback linearization. Robustness is enhanced by variable structure control. Compared with the linear LQ control, much better performance can be obtained.

  • PDF

아크로뱃 로봇의 정준형과 도립제어 (Cannonical Form of Acrobat Robot and Its Control of Swing-up)

  • 남택근;소명옥;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.432-438
    • /
    • 2002
  • In this paper, we described a technique for the swing-up control of a 2 link acrobat robot using a cannonical form which is derived form the law of conservation of an angular momentum based on the center of the first joint. The wide usefulness of the canonical form of the acrobat robot, which was suggested here, is could also be applied to control a free flying robot or an underactuated planar manipulator with no gravity term. Some simulation results are provided to verify the effectiveness of the proposed algorithm