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Sliding Mode Control for a Robot Manipulator with Passive

Joints

Won Kim, Jin-Ho Shin, and Ju-Jang Lee

Abstract: In this paper, we propose a sliding mode controller for a robot manipulator with passive joints. A robot manipulator
with passive joints which are not equipped with any actuators is a kind of underactuated system. Underactuated systems have some
advantages compared to fully-actuated ones. For example, they weigh less and consume less energy because they have smaller number
of components than fully-actuated ones. However the control of an underactuated manipulator is much more difficult than that of fully-

actuated robot manipulator. In this paper a complex dynamic model of a manipulator with passive joints is manipulated for sliding mode
control. Sliding mode controllers are designed for this complex system and the stability of the controllers is proved mathematically.
Finally a simulation for this control system is executed for evaluating the effectiveness of the designed sliding mode controller.
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1. Introduction
Underactuated systems are systems in which the dimension
of the configuration space exceeds that of the control input
space. For example, when one or more of robot manipulators’
actuators fail to work properly, it is said to be in the underactu-
ated states.

Control of this type of an underactuated manipulator is im-
portant from a fault-tolerance point of view, for sometimes it
is necessary that the robot completes its task before it can be
attended to and repairs can be performed.

Moreover, underactuated systems have some advantages
compared to fully-actuated ones. First, they weigh less and con-
sume less energy because they have smaller number of com-
ponents than fully-actuated ones. This characteristics is suit-
able for a special machine such as a manipulator attached to
space shuttle. Second, reliable or fault-tolerant design of the
manipulator is possible for hazardous areas such as space, nu-
clear power plants, etc. In case one of a manipulator’s joints
has failed during operating time, the failed joint - passive joint
- still can be controlled via the dynamic coupling with active
joints. The dynamics and control schemes of underactuated
systems have been studied from the 1990’s. Because the con-
trol is much more difficult than the control of a fully-actuated
robot manipulator, not much active researches about this area
have emerged. H. Arai and S. Tachi, G.Oriolo and Y. Naka-
mura, E. Papadopoulos and S. Dubowsky[1]{2][3] concentrated
on designing a controller based on accurate dynamic model-
ing. However gathering accurate parameters from a large scale
robot manipulator is not easy, and also load parameters vary ac-
cording to the payload. Bergeman applied VSS control scheme
to underactuated manipulators for overcoming modeling errors
and disturbances{4]. J. Shin and J. Lee has been doing research
about robust adaptive control scheme[5].
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IL. System dynamics
Using the Lagrangian formulation, the dynamics equation of
an n-link underactuated robot manipulator with r-actuated joints
and p-unactuated joints can be written in joint space as

M(q)q+ Clq,4)d+ G(q) =u+d(t) = ( CT)QT:: )

where ¢ = (g7 ¢2)T (€ R™ "7} is the joint variables in which
go € R" is the position vector of the active joints and g, € RP
is the position vector of the passive joints. M(q) € R™*"
is the inertial matrix, C(g, ¢)¢(€ R"™) is the centrifugal and
Coriolis torques, G(q)(€ R™) is vector gravitational torques,
u = (17 0X)T(€ R™) is the control torque input vector, T4(€
R") is the actual control input, O,(€ RP) is the zero input
vector to passive joints, n(= r+p) is the number of total joints,
7 is the number of active joints, p is the number of passive joints,
and d(t) = (dfdX)T(e R™) is the norm-bounded external
disturbance vector for whichd, € R",d, € RP, || da || < dam,
and || dyy |< dprn-
Equation (1) can be partitioned as

(i ) (5)=(5) -6 )
Mpo Mpp dp Fp Op+dp
2

where M,o € R™", Mp, € RP*P, and F(q,q) =
(FLF)T = C(9,d)d + Gla).
Some useful properties are given below.

Property 1 [6] [7] M (q) is a symmetric, bounded, invertible
and positive definite matrix.

Property 2 [6] [7] M(q) — 2C(q, q) is a skew-symmetric
matrix.

Property 3 [7] There exist positive constants Mmin, Mmaz,
Cmazs Ymaa, fg and fc such that

Mmin S” M(Q) ”S Mmaz, ” C((IaQ) ”S Cmazx ” q ”7
I G(a) IS gmas, and || F(q,4) IS fo+ fe [ ¢ | ,
)]
where || M(q) || and || C(q,q) || are induced matrix norm,

and are vector norm.
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Property 4 By Property 1, both Moq € R™™" and Mp, €
RP*P are also symmetric, bounded, invertible and positive def-
inite matrices.

Property 5 Effective inertial matrices are symmetric invert-
ible positive definite matrices.

Maa = Maa - MapMZ;IMpa (4)

MPP = MPP - MpaM(;alMap (5)

Definition [8] Pseudo inverse matrix ( for p x r matrix A,
where r > p } is as follows :

AA* =T, A*A £ I, A% = AT(AATY™). (6)

I11. Design of sliding mode controller
1. Control of passive joints
The dynamic equation of the underactuated robot manipula-
tor given in partitioned form in equation (2) can be rewritten for
each joint as

éja = ’_Ma:ll(Mapq'p + Fa — Ta — da) (7)
and
gp = “M;:_z:l(Mpaiia + Fp — dp)- ®)

Substituting (7) in (8), we can get equation (9) as follows :

Myp = My, 7o + Mp, Fa + Mp, Fy + Ma,do + Ma,d,
®
where
My = Mp_lepp = MP;}(MPP - MpaMa_alMap) € Rpo’
M., = —M, My M, € RP*",
Mr, = My, Mpa My, € RP*",
Mg, = —My,' Mpa My, € RPT,
Mp, = —M,,} € RP*® and
Mgy, = M} ¢ RP*P.

P pp

a

Therefore, the dynamic equation for the passive joints can be
rewritten as follows :

Gp = Mpr, 7o + Hp (10
where
Mpr, = M;'M,, = -Myp My M, € R®*" and

Hy = My (Mg, Fo+ Mp,Fy+ Ma,do + Ma,dy) € RP.

We define a sliding mode controller as
Ta = Mzﬁ:‘a(%r - FIP) an

where M € R™*? is a pseudoinverse matrix of My, (=

~ -1
M, MpoM7') with guessed nominal values for the dy-
namic parameters of the underactuated manipulator.

The nominal values are assigned as

‘E[P = MJI(MFQI}'@ + MFppp)

where Mp, M Fos F, M F, and Fp are the guessed nominal val-
ues for My, MF,, Fu, MF, and Fy, tepectively.

Applying (10) to (11) gives

Gp = Vo, +1p (12)
where the lumped uncertainty term is as follows:

Mlp = (MPTQM]ﬁ'a ~Ip)Vp, + (Hp — Mp‘raM#rI:Ip)~ (13)

The controller for the passive joints, V,, is denoted as
Vor =V + AV,

where AV, is a robust control input term.
Tracking error can be given by

e =gp — qpa € B”

where g4 is the desired set points vector.
Sliding surface is given by

Sp =¢ép+ Apep € RP

where A, is a positive definite diagonal constant gain matrix.
Then outer loop input is given by

Vo = dp, — (Kp + Ap)ép — Kphpe,

where K, is a positive definite diagonal constant matrix.
At this moment the error dynamics becomes

5p = —Kpsp + AVp + 1p.

Here the norm-bound of n, which includes parameter uncer-
tainties, disturbances and the control input can be derived as

710 NI (Mpry M, = Lo)Vo, N+ 1| (B — Myr, M Hp)

Assumption 1 By property 3 and the norm-bound property
of d(¢), it is assumed that there exist unknown positive constants
such that

” Mp‘ra M#

pra — Il < <1,
| Hp = Mpr, ME Hy || < e teafl g .
Robust control input is defined as follows :

AVp = _ﬁpﬁ:—?ﬂ’ ap = Rpsp and pp = ég\I/p (14)

where R, € RP*P? is a positive definite diagonal constant gain
matrix, 8, € RPP is some constant vector specified later and
¥, € RPP is a known continuous function which is given by

Uy = (111 11l oo I & 11l en DT

There may exist positive constants such that

I Vo, |

Vo + AV |
IVell+ 1AV |
[l dpa {| +cs [l €p [ +ca |l ep [ +pp-

IN A

Therefore using assumption 1, || 7, || can be described as

170 1< Boy + Opo [l ¢ 17 +0p0 (1l dpa | +55)

O, |l Ep | 40y ep ) Y

where

Op; = ¢1,0p, = 2,03 = co,6p, = cocs and 0,,; = coca.
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The proposed sliding mode controller for the passive joints of
underactuated robot manipulator can be summarized as follows

ro = M, (Voo — Hy) € R, (16)
Vir = Vp + AV, € R, 17
Vo = Gpy — (Kp + Ap)ép — KpApep € R, (18)

AV, = _ﬁpﬁﬁa ap = Rpsp, fp = ég‘yp and (19)

Up = (LG 120 doa W&o Ml ep 1D (20

Theorem 1 Under the assumptions 1 & 2, if we apply the
control law (16) ~ (20) to the underactuated robot manipulator
system, then the overall system is globally exponentially stable.

Proof: A Lyapunov function candidate is chosen as

The time derivative of V' is

V = siRpsp
= s Rp(=KpSp + AV, +11p) @n
< _SZRPKPSP + SZRPAVP+ | Rpsp Il mp |l -

Substituting (19) into the above equation, we can get the
derivative of V as follows:

VoS s Rek -y Lo losya, fimy
< —sy RoKpsp ~ o [l ap || + |l ap [| By + 0. 1l ¢ 117
+0p5 (Il Gog || +5p) + 0ps 1| ép [| +0p5 Il €p 1)
= _SERPKPSP —pp |l ap || +§p3ﬁp I 'ap |l
+ 1 ap | (G, + Opy | G I” +0ps (Il G Il +05)
+§p4 I ép i "‘éps I en D)
= ~5 R Kpsp — pp(l" Ps) Il ap “
e+ 12 4+ i |
e pn+1 e D0 = i) 1 |
= —5 RPKPSP — pp(1 = ps) Il ap || +pp(1 — éps) |l ap |
where
B,
bp, = 1—9 (i=12,---,5),
b = (Opy,0pg, - 59P5)T7
pp = éZ\I’p:Ppeg\I’P and
Ty o= (LGP dpg N €n i en IDT

At this point, it is observed that if we select p, to satisfy the
condition, g, > pp, the derivative of V is always negative semi-
definite. This guarantees the globally exponetial stability of the
system. n

Design algorithm of controller for passive joints

So we can summarize design algorithm as follows :
1. Choose appropriate ¢p, c1, c2, ¢c3 and c4 satisfying assump-
tion 1.

2. Compute 8, = c1,0p, = C2,0p,
BPS = CpC4.

= ¢p,8p, = cocz and

3. Compute 0, = T%%l—,i =1,2,---,5.
3

4. Choose épi ,i = 1,2,---, 5 satisfying the following condi-
tion By, > 0,0 =1,2,---,5.

If we choose variables to satisfy the above condition, the in-
equality p, > pp can always be satisfied.

5. Control input component which overcoms parameter uncer-

a

tainties and external disturbances is AV, = —p, ”a::”, ap =
Rpsp and pp = 620,
2. Control of active Joints
Equation (7) can be written as
o = Mlre— MIF, + Mld,
= Mglr, +H (22)

where

Hy = M NF,—-d.),and 23)

(‘ja = M(;;zl(Ta + da - Mapdp - Fa)-

Since ¢, = ¢ = 0 by the operation of brakes, tracking error
is denoted as follows:

eaZQa“QQdERa

where ¢qq is the desired set points vector.
Sliding surface is defined as follows :

Sa = éq + Age, € R®

where A, is a positive definite diagonal constant gain matrix.
A sliding mode controller is then defined as :

=—Kaosa + AV, € R

where K, is a positive definite diagonal constant matrix.
Therefore

€q + Aaea = C}a — Eiad + Aaéa
Ma_aaTa + -Ha - (iad + Aaéa-

Il

Sq

24

fl

From equation (24), we can get equation (25).
Maa-éa = Ta — Fa + da + Ma,a.(—ijad + Aaéa) (25)

We define a Lyapunov function candidate as

vV = %sfMaasa, and (26)

. . 1 .
V = SZMaaSa + §SzMaaSa

== SzMaaéa -+ Szcaasa = SZ(TG + 77a)
= —5'KuSa+ st (AVa +7a) 27

where 77, € R” is the lumped uncertainty and is defined by
Na = _Fa + da + Maa(_dad + Aaéa) + Caasa-

Property 7 There exist positive constants defined as follows

m“amin y Maamaz s Caamars Jaamaz fga and fCa such that

Maamin S“ Maa(q) ”S Maamax s ” Caa(q7q') ”S Caamaz H q

and || Fo(q,9) 1< fou + feu |1 6 I
(28)
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Using property 7, the norm-bound is
16 1< eo+ex i ¢ |7 (29

where 6, € R® is an unknown non-negative constant vector and
Vo= (LGP dag NI €aflll sa D

Robust control input is defined as follows,
AV, = ~p‘a”—§j—u G0

where pa = 05 ¥,, 0, € R® is an estimate vector of 6.
Summary of the proposed sliding mode controller for the ac-
tive joints is as follows :

Ta = —Kusa+AVLER, 3D
AVe = —parie, (32)
Il sa |l
pa = 67 ¥, and
Vo = (1) G1°) dag il éa Il sa DT 33

Theorem 2 If we apply the control law (31) ~ (33) to the
underactuated robot manipulator system with the locked pas-
sive joints at their desired set-points, then the overall system is
globally exponentially stable.

Proof: We define a Lyapunov function candidate as in equa-
tion (26) as follows :

V= %s?{Maasa. (34)

<
Il

_SzKaSa + SZ(AVG + 7]&)
'_SZKasa - ﬁa || Sa H +SZ77a (35)
—Sa KaSa — fa Il sall -+ 1 sa llll ma |l -

IA N

By substituting (29) in (35), we can get the following result :

V < —81Kasa—pallsall+ 1 50 pa

= _SZKQSQ - (,[)a - Pa) H Sa ” .

This indicates that if we select g, to satisfy the condition,
Pa > pa, the derivative of V' is always negative semi-definite
and this ensures the globally exponetial stability of the system.

|

Design algorithm of controller for active joints
1. Choose appropriate eg, €1, ez, es and e4 satisfying equation
29).
2. Choose éai ,4=1,2,--. 5 satisfying the following condi-
tion G, > 6a,,1=1,2,--,5.
If we choose variables to satisfy the above condition, the in-
equality p, > p, is always satisfied.
3. Control input component which overcoms parameter uncer-
tainties and external disturbance is AV, = _ﬁan*zf:ﬂv Pa =

05 oy and Yo = (L[| ¢ %[ Gog Il €a Il 5a )T

IV. Simulation
Simulation is conducted on a three-link planar robot arm ( n
=3 ). The number of actuated (active) joints is two (r = 2)
and the number of underactuated (passive) joints isone (p = 1).
The passive joint is located at the third link(gs). r > p condition
is satisfied with the definition in the section 2. The figure of the
underactuated robot manipulator is given in figure 1.

@ Active Joints (Joint 1 & Joint 2)
OO Passive Joint (Joint 3)

Fig. 1. The configuration of underactuated robot manipulator

To include uncertainty of robot parameters in simulating, the
nominal values of parameters are selected to be 70 % of the
real values. So the ratio of real value to nominal value is 70
%. Initial conditions are ¢1(0) = ¢2(0) = Odegree], and
g3(0) = —90[degree].

Desired set points are 14 = 90[degree], and gog = q3qa =
Oldegree].

The constants of gains (or matrix) are chosen as :

K, =100,A, =15,R, =1, K, =3, and A, = 3.

So the slope of the sliding line of passive joint in the phase
portrait is - 15, and the slope of each of the sliding lines of active
joints in the phase portrait is -3.

In figure 2 the trajectories of all the joint angles are displayed.
At 0.606 [seconds] joint 3 was moved to desired set point by
direct coupling of active joints so brake operated at that time.
After passive control was terminated, active control was begun.

The phase portraits of all the joints are displayed in figure 3 ~
5. There are two stages in the control of active joints. In the first
stage active joints contribute to controlling passive joint and in
the latter stage they go into self control stage. This fact can be
found in figure 3 and 4. The straight lines in these figures are the
sliding lines. The states may initially exist in distant positions
from the control target points. The states of active joints start
to move smoothly in the first stage which is for the control of
passive joint by the dynamic link between the two joints. In
the second stage active joints are controlled to their objective
points. This stage is subjected to chattering phenomena and
this is evident in figure 3 and 4. The figures indicate that the
states move along the sliding lines to their control points.

The phase portrait of joint 3 is presented in figure 5. The
state of joint 3, which initially exists at a distant position from
the objective point, moves along the sliding line to the target via
the dynamic links of the actuated joints.

V. Conclusions

A robot manipulator with passive joints which are not
equipped with any actuators is a kind of underactuated system.
However the control of an underactuated manipulator is much
more difficult than that of fully-actuated robot manipulator. In
this paper a complex dynamic model of a manipulator with pas-
sive joints is manipulated for sliding mode control. Sliding
mode controllers are designed for this complex system and the
stability of the controllers is proved mathematically. The ro-
bustness property attributed to sliding mode controller enables
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the controller to perform well even in the presence of parameter
uncertainties. Simulation results are presented to verify the ef-
ficiency of the proposed controller. 30% parametric uncertainty
was included in the system model to test the robustness prop-
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erty. The entire algorithms are simple but the design procedures
are rather complex. Stabilities of the two stage controllers have
been proved by using Liapunov stability theorem.

In the simulation results the parameters on co, ¢ and ¢z are
0.8, 6.0 and 0.5, respectively. In assumption 1, ¢g should be less
than 1 and this fact means careful selection of the nominal value
for Mzﬁ.a is very important. The condition on cp in assumption
1 is not always satisfied and depends on selection of the the
nominal value for M,ﬁa. Physically the case of cg > 1 means
that the control input can not overcome the lumped uncertain
term and the stability can not be ensured in that case. So the
value of ¢g in this simulation was calculated in the consideration
of phisycal values of the parameters of robot manipulator.

Because almost physical controllers have limitations on their
outputs, a lot of control actuators have bounded outputs. In
this bounded case the results of this paper can not be applied
directly, because the bounded output may not ensure the stabil-
ity condition. So for the bounded case the controller should be
designed newly in consideration of this bounded condition or
the controllers are still effective if the control outputs are in the
range of bounded limit values.

One of the disadvantages of this approach is the calculation
of norm-bound of lumped-disturbance. Practically norm-bound
calculations for choosing ¢;, e; are not easy. The other disad-
vantage is the chattering phenomena in the control input. To
alleviate the chattering phenomena a boundary layer method
or fuzzy SMC can be applied. However in solving chattering
phenomena with these schemes proving the overall stability is
important to ensure the errors go to zeros.
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