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Obstacle Avoidance of Three-DOF Underactuated Manipulator
by Using Switching Computed Torque Method

Lanka Udawatta, Keigo Watanabe, Kiyotaka Izumi, and Kazuo Kiguchi

Abstract: Obstacle avoidance of underactuated robot manipulators using switching computed torque method (SCTM) is presented.
One fundamental feature of this novel method is to use partly stable controllers (PSCs) in order to fulfill the ultimate control objective.
Here, we use genetic algorithms (GAs) to acquire the optimum switching sequence of the control actions for a given time frame with the
available set of elemental controllers, depending on which links/variables are controlled. The effectiveness of the concept is illustrated

py taking a three-degrees-of-freedom (DOF) manipulator and showing enhanced performance of the proposed control methodology.

Keywords: underactuated manipulators, computed torque method, obstacle avoidance, nonlinear control, genetic algorithms.

1. Introduction

Research on underactuated robot manipulators has received
considerable attention in recent years. The class of manipu-
lators with fewer actuators than degrees-of-freedom (DOF) is
generally referred as underactuated robot manipulators. How-
ever, characteristics such as complex nonlinear dynamics, non-
holonomic behavior, and lack of linearizability are often exhib-
ited by this class of nonlinear systems [1]-[4]. The constraints
of a dynamical system which can not be represented in the form
of F(q,t) = 0 are defined as nonholonomic, where g and ¢
denote the coordinates and time respectively. Examples of non-
holonomic control systems have been studied in the context of
robot manipulators, mobile robots, wheeled vehicles, and space
robotics [1],{5]. This type of underactuated robots can play a
key role in the areas such as space robots, undersea vehicles,
hyper-redundant robots, fault-tolerance robot systems, mobile
robots, wheeled vehicles, efc. [6]-[8]. The free joints that can
rotate freely, or the passive joints that have no actuation but are
equipped with passive element like a damper or a breaks, render
in the advantages such as reduction of weight, energy consump-
tion and cost of manipulators. Thus, controlling this class of
robots is a challenging task and still remains as an open prob-
lem. Therefore, further investigation is required to find plau-
sible control approaches to harvest the promising features of
underactuated robot manipulators.

Control of underactuated manipulators has been investigated
by several researchers in recent studies [2]-[4],[7]-[15]. Sta-
bilization of a PR (i.e., prismatic-revolutionary joints) planar
manipulator is carried out via partial feedback linearization and
nilpotent approximation [3]. In [2], trajectories for positioning
are composed of simple translational and rotational trajectory

Manuscript received: July. 18, 2002., Accepted: Sept. 27, 2002.

Lanka Udawatta: Dept. of Advanced Systems Control Engineering,
Saga University, Japan. (lanka@ieee.org)

Keigo Watanabe: Dept. of Advanced Systems Control Engineering,
Saga University, Japan. (watanabe @ me.saga-u.ac.jp)

Kiyotaka Izumi: Dept. of Advanced Systems Control Engineering, Saga
University, Japan. ((izumi@me.saga-u.ac.jp)

Kazuo Kiguchi: Dept. of Advanced Systems Control Engineering, Saga
University, Japan. (kiguchi@me.saga-u.ac.jp)

segments and the trajectory segments are stabilized by nonlinear
feedback control. Furthermore, cooperated control for underac-
tuated manipulators has been brought into the research field [8],
in which among the many possible control sequences of a robot,
the optimal control sequence is selected by dynamic program-
ming. Control of robot manipulators via chaos attractors and
fuzzy model-based regulators is focused in [12],[13], where the
closed-loop stability analysis was carried out by employing a set
of Linear Matrix Inequalities (LMI). Appling fuzzy logic con-
trol with two major steps, an underactuated robot with a fuzzy
microcontroller is presented in [14]. Here, on the basis of the
position of first link and on the position error of the second link,
a control action is capable of modifying the position of the first
link with suitable voltage to the motor to obtain the right speed.
Obstacle avoidance motion planning for a three-axis planar ma-
nipulator with a passive revolutionary third joint from one zero
velocity state to another was investigated in [11]. This study
brings motion planning from one zero velocity state to another
for a three-joint robot in a horizontal plane with a passive rev-
olute third joint. Even though various researchers have carried
out considerable numbers of studies, there are some limitations,
drawbacks and disadvantages.

The main purpose of this paper is to propose a control strat-
egy for underactuated manipulators using switching computed
torque method (SCTM), especially with avoiding obstacles.
One of the major advantages of this method is the ability of con-
trolling the entire system without using rigorous linearizations
or deformation of the original nonlinear system and employing
simple computed torque controllers as partly stable controllers
(PSCs) in the control system. The obstacle avoidance of under-
actuated robot manipulators using SCTM is an extended ver-
sion of our former research works [5],[19],{20]. This genetic
algorithms (GAs) based scenario can promote authors to look
beyond the classical methods such as chained form [17] while
adding intelligent controlling. The rest of the paper is organized
as follows: In Section 2, brief introduction to the SCTM and
controller selection criteria are presented. Controller selection,
design, and results of PSCs of three-DOF robot manipulator are
discussed and presented in Section 3. Systematic procedure for
obstacle avoidance and results are presented in Section 4 and
Section 5 respectively. Finally, concluding remarks and per-
spectives for future extensions are given in Section 6.
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1. Concept of switching computed torque method
For the purpose of designing the controller, consider the dy-
namic model of a manipulator given below:

M(q)g +h(q,q) = F ()

where geR™ is the generalized coordinate vector and FER™
is the input force/torque vector. M (g)eR™™” is the symmet-
ric, positive-definite inertia matrix and h(g, ¢)€R™ represents
Coriolis, centrifugal, gravitational, and friction components.
Suppose that an underactuated robot system has m, number
of actuators to control and n-DOF (1 < m, < n) links. The
equation (1) can be rearranged as follows in order to obtain the
desired second-order derivatives (q):

¢ = M (q){-hg,q)+F}
—  L1(@){~h(g.a)+ F} @)

where D = det(M) and M is the adjoint matrix of M. It is
assumed that M is invertible. Here, we represent all the ac-
tive joint forces as [Fy Fb ... Fm,]7 2 FeR™ and it is
assumed that ., -actuators are directly allocated to the roots
of m,,-links starting from the first joint. Now, we have ,Chr,.,
number of combinations of m.,-dimensional controllers. More-
over, the number of different combinations of n-variables and
.y -actuators at a time, without repetitions, is

< n )Zn(n~1)...(qﬂ?~mu+l). 3)
My !

One of the above combinations of available controllers

should be selected at a given time in order to actuate the robot
system (3). For simplicity, we present how to derive an elemen-
tal controller for selected ., number of link coordinates out of
n-links as shown below:

5'11(F1 —hiy 4+ + Sln(_hn)

5= A L @
Smo1(F1 —h1) 4+ 4 Smun(—hz)
This can be rewritten as:
Sn - Sim, - Sin
5 = : : h(q,q)
St S'mumu e gmun
) Sn o Sim
+B ) : ) : F
Smel 0 Smuma

where s 2 [s1 82 ... 8m,]T denotes one possible com-
bination of m,,-link coordinates out of {q1, gz,...,¢n} and
S (i =1,..,my;§ = 1,...,n or m,) denotes their associ-
ated cofactors consisting of inertia element. However, it should
be noted that the choice of desired controllable links/variables
using a set of elemental controllers remains open. Define N

and M matrices as

811 - glmu o S
1 . . . . .

N = D : : : : : )

Smul e Smumu e Smun

PSC Pool

Controller index

1101011 1|0 0 1 : 1|/110|0]1
ot & & tyoi Iy
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Fig. 1. Coding of genes with control indices
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Since the inertia matrix M is positive definite, MgR™ >

is also a full rank matrix for any control law. After simplifying,
we have a set of control inputs for any control law as below:

F=M1{s"+Nh(q.9)} (6)

where §” is the modified acceleration, which can be constructed
by using a simple PD servo such as:

8" =384+ K, (84— 8)+ Kp(sa—5) ©)

in which s4, 84 and 3, are the desired position, velocity and ac-
celeration vectors of selected link coordinates to be controlled,
and K, > 0 and K, > 0 are the derivative and position gain
matrices. Thus, we can synthesize all the ,C,,,, PSCs using the
above procedure.

To solve the general control problem with optimum switch-
ing of available PSCs, we define the total time span ¢ty of a
trajectory ®(t) such that {®(¢);t € [0,tn]}. The genes of a
chromosome are represented as controller indices. Fitness in
this case is assumed to be constructed by the error between the
desired values and state variables for the total time span 7,
i.e., fromt = 0tot = tx. Thus, the fitness function of the GA
optimization process is defined as follows:

N
fitness =) za(k) - x (k)i ®)
k=1

where k is the discrete-time instant, N is the final discrete-
time instant, x 2 [ g2 o gn o @ Go e Ga]T
denotes the state variable vector, and x4 is the desired ref-
erence vector. Note that the weighting matrix W(k) =
diag {wi(k), wa(k),..., wan(k)},k = 1,2,...,N are se-
lected so that they relax the condition at initial stage while keep-
ing higher weights at the latter part of the time frame. Figure |
shows a sample chromosome that represents controller indices
for two PSCs, where 0 represents the first elemental controller

and 1 is for the second elemental controller.
In our past studies [19],{20], it has been shown that one can
also select the fitness function (8) to fulfill the sub optimization
goals such as energy consumption with introducing constraints

(18]
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Fig. 2. 3D view of PPR robot system (upper) and its parameters
(lower)

III. Three-DOF planar manipulator

In this section, we introduce three-DOF underactuated ma-
nipulator in order to illustrate the SCTM. A three-DOF PPR
(i.e., prismatic—prismatic—revolutionary joints) planar manipu-
lator shown in Fig. 2 is taken into consideration. Generalized
coordinates and inputs of the robot manipulator are defined as
¢" = (a1 g2 qa] = [z y 6land FT = [f, f, 0] respec-
tively, in which 7 = [f. f,]. The equation of motion of the
robot system is given by (1) and it has the following M (q) and
h(q,q):

[ My Mz Mis
M(q) = Mis M Mas )]
| M1z Maz Mss
i Me +Mmy +m 0 —mlg sin
= 0 my+m  mlgcosd
| —mlgsind mlgeos®  mii+ I
2 —'mlgé2 sinf + d &
h(g,q) = ha | = | —ml6°sin6+dyy | . (10)
L hs d99

This manipulator has the parameters and variables shown in Ta-
ble 1.
Taking D as D = det(M) and M;; as cofactors of M gives

) 1, . .
Gr D {M11(—h1 + fz) + M2 (<h2 + fy) —M13h3}

1 ~ - N
G2 5 {2 (=1 + fo) + Moz (—ha + fy) — Mashs }

gz = % { M3 (—h1 + fo) + Mas (—ha + f) — Msshs }
an

where R
My Mz Mis

M = ]\:412 M22 M23 . (12)
M1z Mas Mss
The values of Mij, (i=1,2,3; 7 =1,2,3) are given below:
My = MaoMzss ~ MZ;, Mz = —(Mi2Mss — MagMi3)
Mg = MiaMp3 — MizMpo
May = —(Mi2Ms3 — Ma3Mis), Map = M11Mss — M,
Mz = —(M11Mag ~ M12Mi3)
Ms1 = MiaMag — My3Maa, May = — (M1 Mas — M1aMs)
Maz = M1 M — MZ,.
Since we have 3C2 = 3 number of combinations of m, (=
2)-dimensional controllers, three computed torque controllers

can be brought into by two actuators. When considering the
first control law for the sub-coordinates s7 = [g; g2]:

. _Mll M12 Ml?) hl
{ql} - _| D D D
g2 Mz Mi; Mo hs
L D D D
[ M1 M
+| P D {f’] (13)
Mz My Jy
L D D
we obtain
« Control law 1:
. A g1
fa - D My Mg
Sy Mz Moo
o - - ~ hy
« G _‘_i ]\f[u ]\fhz MIB hy
s D | Msy Mas Mos hs

DaD | =Mz My
ok - ~ - h1
« q1 + l Mll MIQ Mls ho
Gz D | My My Moas
h3
(14)
with
1 Mu M12 * i1
M = =Y ~ ~ y 8 = Lo 3
D [ Mz Ma ] [ 42
1 M M Mg
N = = N N - 15
D li May Mz Mas ] (15)
Da = (MM — Miy)/D?,
- 1 Ma2 —Mo
M = — IS -~ 16
D |: M2  Mn ] (16)
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Table 1. Manipulator parameters and details

Parameter . .
(or Variable) Meaning Value Unit
My Mass of platform X 0.5 [kgl
My Mass of platform Y 0.8 {kgl
m Mass of the arm 0.5 kel
lg Distance to m from m,, 0.2 [m]
I Moment of inertia of arm 6.7x1073 [kgm?)
Distance of m. along X -axis - [m]
Y Distance from m, along X -axis - [m]
2 Angle from X -axis - [rad]
fz Force on platform X - [N]
fu Force on platform Y - (N]
dy Damping coefficient of X 0.001 [N-s/m]
dy Damping coefficient of Y 0.001 [N-s/m]
dp Damping coefficient of arm 0.01 [Nm-s/rad]
where the modified acceleration vector §* is determined by a M M
simple PD controller: +| P D [f = } ) (23)
. , , Mis M. f:
gt | _ | da+ Ko (gar — 1) + Kp1 (a1 — 1) a7 ﬁ ‘Dé ‘
G5 Gaz + Kua2 (qaz — G2) + Kp2 (a2 — q2) |
Similarly, we can consider the second control law for the sub- Then, we obtain
coordinates sT = [q2 q:.;]; » Control law 3:
) [ M21 M22 M23 hl
HIE EAE A ; 1 .
2a 82 1788 | hy ¥ = —MIs"+N| h 24
LD D D { fo ] e R e @Y
M2 M2
+| b D [fr} (18) with
Mz Moas fy
- D D De = (MM — Mi2Mis)/D?,
Then, we have - -
s » 1 Mg —Mi»
« Control law 2: M = = = . 25
D [ —Miz M } 23
5 IR I PP (19) PR
Jy Dp b o — I = 1) Mn M12 Mm 26)
3 g |’ D | Mz Ms; Mss
with
Dy = ( Mo Nas — Mis Mu) / DQ’ Whe.re the modified acceleration vector §* is given by the fol-
7 . lowing PD controller:
- —M
Moo= %[ o M”] (20)
—Ms 12 Gar + Ko1 (gar — ¢1) + Kpa (qa1 — 1)

&t = qz N = o Mz Moas @1
g3 D | Mz M Mss

where the modified acceleration vector 8™ is given by the fol-

lowing PD controller:

G | 1 Gao+ K2 (qaz — ¢2) + Kp2 (qaz — q2)

- | =1 . . . . (22)

43 Gas + Koz (Gas — 43) + Kp3 (qaz — q3)

We further consider the third control law for the sub-
coordinates s = lq1 g3]:

Mll MIQ MIS hl

{iil ] _ _| ™D D D ||
Gs Mz Mz Mz ha
D D D

a1
= .27
{ a3 } [ Gas + Koz (das — d3) + Kps (qas — g3) ] @n

Applying the control laws 1, 2 and 3 to the robot manip-
ulator separately, three graphs can be obtained as shown in
Fig. 3, respectively. Here, we selected K, K, values such
as Kpl = 8.0, Kpg = 8.0, Kpg = 15.0 and Kv1 =
4.0, K,2 = 4.0, K,3 = 1.0. Note that the selected val-
ues are arbtrary and the designer can select them according to
his desire, making sure to keep low gains when underactuated
joints are present. For an example, we can obtain a critically
damped closed-system by using K, = 2,/K,. This figure
shows that each elemental controller can control the associated
sub-coordinates, though the total coordinates can not be con-
trolled by using only an elemental controller.
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Fig. 3. Time responses of z,y, and € using each PSC inde-
pendently: (top) control law 1, (middle) control law 2, and
(bottom) control law 3

1v. Obstacle avoidance

In this section, we develop necessary conditions for control-
ling the above-explained manipulator with avoiding obstacles.
The obstacle avoidance problem of manipulator has been for-
mulated in terms of collision avoidance of links rather than
points. Link collision avoidance is achieved by continuously
controlling the link’s closest point to the obstacle. For the col-
lision detection/avoidance using the SCTM, the links of a robot
manipulator can be modeled by introducing enclosing ellipsoids
[16]. However, in this study, we use an elliptical model rather
than ellipsoids because a PPR planar is considered for the sim-
ulation. One of the three links for the robot manipulator can
be represented and modeled by a 2D ellipse as shown in Fig. 4.
Here, lengths of the major and minor axes of the ellipse are de-
noted by a and b respectively. These values are calculated from
the following relationship:

a=d+t+ad, b=0b+g8b (28)

Robot link

Enclosing ellipse

\(xc, Ve )Y

Obstacle’

[

(X5 Y5)

Fig. 4. Elliptical model for modeling the robot links

where & and b are taken from the manipulator dimensions as
shown in Fig. 4 while « and 3 can be selected by trial and error.
Suppose that the modeled ellipse of a selected link has a mov-
ing center at (z¢, yc) in X — Y coordinate system. Then the
elliptical model can be formulated as below:

Az’ + Bey +Cy> + Dz + Ey+ F =0 (29)
where

— C2/a2 + 82/b2
B 2cs/a* — 2cs/b°
C /0 + 5% d?
D = —2(zc® +yesc)/a® — 2(xes® — yesc) /b
E = —2(yes® + zesc)/a® — 2(yoc® — wesc) /b°
F = (26 +y°s" + 2zcyesc)/a®

+y 2 + 2.2s® — 2woyesc) /b — 1

in which s = sin@ and ¢ = cos 8, where 4 is the angle of the
ellipse measured counterclockwise from the X —axisin X — Y
coordinate system.

Now, we formulate the obstacle avoidance problem by using
SCTM. In this case, an additional penalty function is brought
into the fitness function (8) as below:

N N
fitness = ¢ ZPTotal(k) + Z llea(k) — mUC)H?/V('C) (30
k=1 k=1

where ¢ is a constant depending on the problem. When the
vaule ¢ is at low, the effect on the total penalty will be very
small. This means the that there is a less effect on avoiding
obtacles and still has the capability of controlling the system
as in (8). The penalty component Protai(k) = Y., Pi(k).
Pi(k) is given by:

Pi(k) = {1 W Sile, o) <0 (31)

0 otherwise

where fi (2o, Yo) = Aizo> + BiTolYo+Cilyo” + Dizo+ Eiyo+
I and f; is calculated from the parameters and the current po-
sition of ith link (z = 1,2,3) at a given k. (%o, Yo) 1s the
center of the circular obstacle with radius r. Note that the vir-
tual outer peripheral of the elliptical model is selected such that
a=a+aa+dand b= i)+ﬁ5+d, in order to make sure the
value d > 0 always.
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Table 2. GA parameters used for the simulation

Parameter l Value
Population size 100
Crossover rate 0.6 (uniform)

Bit size 1000
Mutation rate 1/(bit size)
Selection criteria Best 10
V. Results

1. Case 1

We applied the concept explained in Section 2 to control
the three-DOF PPR robot with the obstacle avoidance method-
ology introduced in Section 4. The three-DOF robot shown
in Fig. 2 was taken into consideration, starting from ¢(0) =
065 05 1 0 0 O]T towards the desired value 4 =
[0 0 000 0]T. A circular obstacle having a radius of r =
0.08 [m] is placed, keeping its center at (0.25,0.25). The K,
and K, values are kept as they are in Section 3 and set ¢ and d
values to ¢ = 10,000 and d = 0.1.

The total time frame 5 was set to 32 [s] with 0.01 [s] sam-
pling. Table 2 shows the GA parameters used in the optimiza-
tion process.

We also applied the following elements w; (k) of the W (k) =

diag {wr(k), ..., we(k)}, k = 1,2,..., N for the fitness
function (30):
wi(k) HO0<k<N/2
wi(k) {wi*(k) otherwise (32)

wy =100, we =wi, w3z=w1, ws=1,

Ws = Wq, Wg = W4

w} = 10000, w3 =wi, wi=wi, wj= 1000,

wi = w;, w§=w;j.

Figure 5 shows the simulation results for the time responses
of controlled variables z, y, and 6.

1.2— T T
©
] or J
I}
Q
17}
<l
E
g —--- X
T y ]
— 0
1 I 1
0 15 30

Time t [s]

Fig. 5. Time response of controlled variables x, y, and 0

Moreover, the time responses of £, ¢ and 6 are given by Fig. 6
and the path of the evolving elliptical model and the tip of the
robot manipulator are given by Fig. 7.
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Fig. 6. Time response of controlled variables %, g/, and g
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Fig. 7. Path of the evolving elliptical modetl and the tip of the
robot manipulator

Furthermore, Fig. 8 shows the corresponding best fitness val-
ues of each generation. In this simulation, we set the GA stop-
ping condition as 350 iterations. If the designer wants to stop
the GA evolution at earlier stage it would be better to set the
termination condition considering the total error or reqired con-
vergance accuracy of the desired variables.

1.4 .

o
]

Best fitness [x106]

0 150 300
Generation number
Fig. 8. Evolutionary history
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robot manipulator for two obstacle case

It is found frpm Fig. 5 and Fig. 6 that the system state vari-
ables have converged to the desired values. This ensures that the
controlled variables are met the desired values within an accept-
able level of time frame with avoiding the obstacle. Moreover,
the optimum path can be seen in Fig. 7 confirming the evolu-
tionary history of the GA process in Fig. 8.

2. Case 2

Further simulation was carried out for a two obtacle case in
order to illustrate the proposed method. Two obstacles were
placed in the X — Y plane avoding the movements towards the
negative qudrants (see Fig. 9). We tried to dive the manipulator,
starting from (0) = [0.5 0 0 0 0 0]7 towards the desired
valuexyg = [0 0.5 m 0 0 0]T. In the optimization process, we
can add another Protq: (k) term for the fitness function when it
introduces the second obtacle.

In this case, the weights were changed in order to illustrate
the flexibility of selecting the desired weights in a different
manner such that they relax the condition at initial stage while
keeping higher weights at the latter part of the time frame:

wy =10, we=wi, ws=w1, ws=1,
Ws = Wq, Ws = W4

wi = 10000, w; =wi, ws=wi, w; = 1000,
wi =wi, w§=w;.

All the other parameters were set as explained in Case 1. There
were no restrictions in Case 1for moving the manipulator on
X — Y plane. So that, we could observe the additional move-
ments in the negative quadrants in Case 1, whereas such move-
ments were eliminated in Case 2.

VL. Conclusions and future works

This paper has aimed at the investigation of controlling un-
deractuated robot manipulators with avoiding obstacles. The
three-DOF PPR robot, working on a horizontal plane, was taken
into consideration so as to illustrate the present method. PSCs
were derived using the original dynamic model of the manip-
ulator so that they are employed under a proper switching se-
quence to achieve the global convergence and stability of the
total control system. The optimum switching sequence of PSCs
was determined by evolutionary computation, i.e., a simple GA.
The results demonstrated the effectiveness of the proposed al-
gorithm. Thus, the proposed control methodology is useful for

controlling underactuated robot manipulators with avoiding ob-
stacles.

One of the major advantages of this method is that entire
system can be controlled without using rigorous linearizations
or deformation of the original nonlinear system and employing
simple computed torque controllers as PSCs in the control sys-
tem. In our past studies, it has been shown that the consumption
of energy of robot system and chattering can also be optimized
by introducing additional constraints to GA process. Apart from
these two cases, it is interesting to see the control performance
for various initial conditions, different types of obstacles, and
changing the values of fitness fuction parameters (such as ¢ and
W(k)).

Authors are currently investigating a fuzzy rule extraction for
selecting PSCs for online operations of underactuated manipu-
lators. Under this, the fuzzy rule base of switching the PSCs is
optimized using GA and the optimization is performed off-line.
Design parameters of the fuzzy rules are encoded into chromo-
somes and shapes of the Gaussian functions are evolved to mini-
mize the angular position errors. The angular position errors are
used as the inputs to the Gaussian membership functions in the
antecedent part and the one index of the PSCs is assigned in the
consequent part of the fuzzy reasoning. Then, this trained rule
base can be brought into the online operation of the underactu-
ated manipulator. Training for different initial configurations,
a robust fuzzy rule base can be extracted for online operations.
Details will be available in future publications.
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