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Dynamics and Motion Control
of an Underactuated Manipulator
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I . Introduction
The underactuated manipulator whose some joints do
not have actuator has some interesting features. First, a
light weight manipulator can be made by implementing
simple hinge or holding brake instead of some joint
actuators. The reduction of manipulator weight is
strongly required for sSpace robots. Second, the
underactuated manipulator easily overcome actuator
failure due to unexpected accident. The fault-tolerant
control is highly desirable for robots in

hazardous environments.

remote or

Recently some researches for analysis and control of
the underactuated manipulator have been presentedi1-6].
In the control
should
manipulator

of the underactuated mampulator, we
consider the «coupling characteristics  of
dynamics and that the manipulator is
uncontrollable. For more effective motion control of the
underactuated manipulator, we have to know the dynamic
characteristics of the manipulator. But, in general it is
difficult to analyze the dynamics of the manipulator
because of its strong non-linear characteristics.

From the past it is known that first integrals of
non-linear differential equations give qualitative infor—
mation about the behavior of the underlying dynamical
systems [7-10]. In this paper we present the analysis of
the dynamic characteristics of the underactuated two-link
manipulator based on the first integral approach. Also
simple and effective motion control algorithm of the
manipulator is given with numerical example. The first
integral approach can make us analyze the dynamics of
the underactuated two-link manipulator. As a result we
can make simple control algorithm using the dynamic
charac- teristics.

In section 2 we derive the equations of motion. In
section 3 we find the first integral for the manipulator
and illustrate that the motion of the manipulator is
described by the integral constant of the first integral.
The dynamics in forced motion actuated only at the
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second joint and the two configurations in free motion
are presented. In section 4 a simple motion control
algorithm with numerical example is made using the
dynamic characteristics analyzed in section 3. And the
controllability of the manipulator without any additional
equipment such as a brake is discussed under friction
effect.

I1. Equations of motion
The two-link manipulator actuated only at the second
joint which has planar motion without friction and

damping effect is modeled in Fig.1,
O m,

Fig. 1. Model of an underactuated two-link ma-
nipulator.

where

¢ is the angle of the first joint,

8 is the angle of the second joint related to the first
link,

mi(my) is the mass of the link 1(link 2),

5,(ly) is the length of the link 1(link 2), and

T is the actuated torque at the second joint.

The kinetic energy of the manipulator, E x, can be
expressed
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The equations of motion of the manipulator can be
written as follows using Lagrangians:

(1+xA* +2Acos @) @
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where g is acceleration of gravity. In the same manner,
the energy equation (1) has dimensionless form as

Ek=%x/12é2+~%-(29+ A+ 00+ Hcosd, (4
where
E,
E,= )
k mogly

Solving (2) and (3) for Hand ¢ leads to

P 1
f= Ag(x_cosg¢){ (1+ Acos )b =)

+{( 8+ $)*+ 16°cos ¢}Asin ¢},

= m{(l + xA*cos )8

—{x26*+ (B+ 8)*+240(0+ d)cos ¢ 6)
Ad*cos ¢}Asin ¢},

II1. Descriptions of motion and dynamics
In this section, we show that the motion of the
manipulator can be described schematically by the
integral constant of the first integral (it is called the
trajectory parameter in this paper). And we show the
dynamic characteristics of the manipulator based on the
analytic approach by the first integral[10].
1. Descriptions of motion by the first Integral approach
We consider the two-link manipulator as a discrete
time system. The control input is taken as a discrete
values and the non-dimensional sampling time is chosen
appropriately. The control action is started from the time
7; applying a constant torque, and switched by other value
Here ¢, and E, (=0
1,...,n) are the angle of the second joint and the
kinetic energy of the manipulator respectively at the time
7;. Also let the interval r;<7< 7,4+ be control interval

at the time 7, 179,...,7y

7, and B; is a constant torque at the interval. Then, the

kinetic energy of the control interval # is defined as

follows:

Ei,= pd—9¢,)+ i=$‘1,35(¢i+1“¢i)+Ek[, (7
= Bn¢+ck,,,

where

==, E,,. )

In here, we find the first integral for the second joint
equation. Since the first three terms in the parentheses
{} of (6) equal two times of the Kinetic energy (4), we
have

_ 1
aliypmwwe e (the x>+ 24 cos $)6 ©)

— (2E,+ Ad’cos ¢)Asin 8}.
To find the first integral,

auxiliary equation from (9):

&S:___ Q’ZSinQCOSQ . (10)

x— cos ¢

we consider the following

Integrating (10), we have

S X_l .

@ V ———x_cosg¢ P, (11
where ¢, is the the angular velocity of the second joint

¢=0. Next,
including the neglected terms. Assuming that é. is the

of the manipulator at we consider (9)

function of time r, (11) can be expressed by

(0= —x%)—?—é (12)

Differentiating (12) and substituting (7) into (12), we

have
s . 1 (1+ xA® +2/1cos¢>),8n
—2(5 ¢+ Ck)Sln¢}d¢
Integrating (13), we obtain
1 (2= (1+ xA® + 24 cos ¢) B¢+ 2Ac ,, cos ¢
+cCy,,
where ¢, is a constant and determined by
- 1 2
.= Fx-D { (14 xA° +24cos ¢,)
(Baci—Ba)bnt22(cy, ,~ ) (15)
cosd,)tcy, .
In (14) since &. expresses the forced motion actuated

by the torque pB,, we call it the trajectory parameter.
and ¢, are determined by (8) and (15)
respectively, and then the motion of the second link can
be obtained by (14). Fig. 2 shows the plots of (14) for

Here c,,

B8;,=1,0,—1 in case of x=2 and A=1. The plots
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Fig. 2. The varations of the trajectory parameter
@, in case of x=2, and A=1, where the
solid line is B;,=1, the dotted line is
B;=—1, and the dotted chain is B;=0.
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represent the forced motion, started from the point O
with ¢;=0 and E, =0, actuated by a constant torque,
and then switched by other constant torque at the point
A, B, C and D respectively. As long as the actuated torque
and switched point are given, we can take the motion
trajectory schematically using the figure. As a extreme
example, if we assume the mass of the manipulator as
my>m;, we have to take the very long motion
trajectory to reach the any target position such as Z.

On the other hand, according to the conditions for the
integrability of the free joint dynamic equation[2], (5) can
be integrated twice to

o= 6,— d— by 1—x2*

2 Jg1+ xA%)*—42°
1+;(/1' &

1+x/1‘ 24 ¢0}+mr],

* tan { 1+ aito4 272
2n—1D)r<¢<2n+Dr,n=1.2, « -

Equation (16) represents the motion of the passive joint

of the manipulator and shows that there is one-to-one

mapping between 6§ and ¢.

As shown in the above illustrations, we can describe
completely the motion of the manipulator actuated at the
second joint by (14) and (16).

2. Dynamic characteristics

In this section, we present some important dynamic
characteristics of the manipulator based on the proposed
analytic approach in the previous section.

2.1. Forced motion

The forced motion actuated at the second joint has a
specific motion characteristics. Now we introduce the
specific motion characteristics as a form of theorem.

Theorem 1 : Assume that the initial Kinetic energy is
E,=0.

¢ is zero,

zero, 1.e., Then if the angular velocity of the

second joint the two-link manipulator will
stop.

Proof : Equation (14)

trajectory parameter in the control interval

showing the variation of the
n can be
expanded by (8) and (15), and arranged as follows:

Lj(pyie L2l g

2 P.(p) = FEPIEY (E,—E,)
+~/1h()f2fl)(EkCOS¢_Ek”COS¢0) an
+5 a8’

If (17) is 0, the angular velocity of the second joint

¢ will be 0 also. Rewriting the right side of (17), we
have
E,
Ax—1

+ 2cos ¢}

{2+"</1— y+ta-1)

Ey, x 12
R A G (18)
+%(1—%)+2cos¢o}+%¢5‘(¢o)2

Since the initial condition E, =0 and the possible
values of the physical parameters are x>1 and A>0,
(18) cannot be 0 without E,=(. Therefore it is proven
that the two-link mampulator stops when the angular

velocity of the second joint is O. [ |
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On the other hand, in the case the initial kinetic
energy E, is not zero, the two-link manipulator has
kinetic energy; nevertheless the angular velocity of the

second joint ¢ is zero.
2.2. Free motion

Next, we show that the free motion can be classified
into two configurations. The one is oscillation and the
other is rotation. We consider the free motion in control
interval

n. Then, since the actuated torque B, is zero,

the equation of the variation of the trajectory parameter
(17) is

Lopr= a2t (19)
where £ is a constant and can be expressed as
L+ xd*)(Ey,— Ey) —24E 4 cos ¢y
- Ax—1) 20)

+4 b0t
Equation (19) expresses the free motion of the second

link of the manipulator. Since the left side of (19) is
positive, we have

2F , cos ¢
Ax=1) +p=0. (21)
In (21), we can consider the following two conditions:
2E 2E,,

(a) mzp, (b m(i) (22)

Under the condition (a), (21) is satisfied on a constrained
range of ¢. In this case, link of the
manipulator oscillates between the two points defined

2E AC"*"’ 4 p=0. On the other hand,

by the solutions of T
under the condition (b), (‘71 is satisfied on all range of

¢. In this case,

the second

the second link of the manipulator
rotates continuously. When the condition (a) is satisfied,
we call it the oscillation mode, and when the condition
(b) is satisfied, we call it the rotation mode. The two
configurations of the motion are illustrated in Fig. 3.

.
P

{b) Rotation Mode

Fig. 3. Two configurations in free motion.

Threorem 2 : Assume that the initial kinetic energy is
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zero, i.e, £, =0. Then a free motion occurring after a
forced motion is always rotation.

Proof : Consider the free motion in control interval n.
By the same manner of (21) and (22), we investigate the

sign of the following equation:

2F ;.
Alx—1) r=
Ey, ., 1y 1,1 :
Alx—1) {,_/1(/1_1) —A(l—x)} @
(1+xA*+ 24cos ¢ E £

T R

Since the condition £, =0 and the possible values of
the physical x>1 and A>0, (23) is
always less than 0. Thus we can say that the type of
the free motion is rotation, [ ]

parameters are

Also in the case that the initial kinetic energy E, is
not 0, the types of the free motion is determined by (23).
If the dynamical condition of the manipulator makes (23)
to be less than 0, the rotating motion will appear. On the
other hand, if the condition makes (23) greater than 0,
the oscillating motion will appear

IV. Motion control

In this section we show the simple and effective
control algorithm with numerical example using the the
dynamic characteristics showed in the previous section.
Also the controllability under friction effect will be
discussed.
1. Simple control algorithm

It is reported that the manipulator considered in this
paper is uncontrollable[1]. The manipulator has one-to-~
one mapping between 6 and ¢. If the one joint of the
manipulator is positioned, the position of the other is
determined depending on the pre-positioned joint,
However, it is confirmed that the output of the passive
joint is controllable. As mentioned before, actuating the
active joint, we can control the two-joints one by one.
First, we control the passive joint using dynamic
coupling by the motion of the active joint. Second, we
control the active joint while fixing the passive joint. At
this time, it is necessary to implement the brake at the
passive joint to hold the rotation induced by the motion
of the active joint. In motion control, the actuated torque
pattern is made using dynamic characteristics of the
manipulator analyzed in the previous section. The simple
motion control algorithm is presented as follows.

Positioning the passive joint : At first, we determine the
motion of the active joint to positioning the passive one
using (16). If the target position of the passive joint is
given, we can determine the temporary target position of
the active one to generate appropriate dynamic coupling
for the positioning the passive one. Second, we make the
actuated torque pattern for the passive joint to reach the
target position with the state that the both joint
velocities are zero. Focusing on the theorem 1, we can
take the appropriate torque pattern for the manipulator to
be stopped at the target position of the passive joint by
making the active joint velocity to be zero. Considering

the above condition, the actuated torque pattern can be
determined by the arranged form of (7):
p= 86— 3 86— ) —Eu). 24

= n—

where ¢, 1s a target position of the active joint. Also

focusing the theorem 2. we can take the torque pattern
that has free motion interval. Although we take the free
motion interval in the actuated torque pattern, we can
make the active joint moves toward the temporary target
position because there is only rotation.

Positioning the active joint : We control the active joint
while acting the brake at the passive one to hold the
rotation induced by the motion of the active joint. Then,
consider the one-link
manipulator. Thus we can make the torque pattern easily
considering the kinetic energy.

Optimization of the actuated torque patten : The
controlled motion of the manipulator is composed of
forced motion and free motion. We can make various

we can manipulator as a

torque patterns for a control objective. We optimize the
actuated torque pattern for energy consumption E and
control time T. The estimative function ] is defined by

J= ke ke (25)

where £k, and k, are constants, and FE and T i

are energy consumption and control time respectively in
the controlled motion without free motion. We determine
the actuated torque pattern minimizing the estimative
function ] by the simple computation.

In this study we consider the manipulator as a
conservative system. If a manipulator has a friction
which cannot be neglected, we should implement a
feedback scheme to the proposed control algorithm.

2. Numerical example

The parameters of the two-link manipulator used in
And the actuated
constant torques are used 1, 0, -1 to simplify the
problem. The manipulator is in the initial configuration
(8, 9,0, ¢)=(0,0,0,0). The goal is to bring the mani-
pulator to (8, , 8, ¢)=( %, %.0,0). The constant &,
and k&, are determined as same value in this example.
The two constants are in trade-off relations for low
energy consumption and high speed motion control. The
result of the simulation is shown in Fig. 4, where the
symbol * shows that the holding brake of the passive
joint is active from the point. We can see that the
objective of the motion control is carried out successfully.
3. Controllability under friction effect

If the friction act on the passive joint, it is not
necessary to implement any additional equipment such as
a brake for controlling all the joints to a specific
position. For control of the passive joint, we use the
dynamic coupling of the active one[ll. We give the

the simulation are x=2 and A=1,

desired motion of the passive joint as 6/7). The 847

is a sufficiently smooth function which satisfies the
initial conditions and the final conditions. Substituting the



Angle

Torque B

Time

g, 4. A numerical example : motion of the
manipulator and the actuated torque.

desired motion 0/ 7) into the equations of motion which

consider the friction effect, we have the following
equations:
(1+ xA* +2Acos ¢) 4,

 +(+Acose) ¢ (26)
*/145(2 0{/+ ¢)sm¢+ 2:1 9(,' =a s,
(14 Acos ) 0+ p+A 6, sing+ ¢, 6 o7
=B8+4 frs

where @ ,(8,) is the friction torque of the passive
(active) joint. From these equations, the torque £ is
obtained as follows:

_ 1 e 2 ;-

A= lf/lcos_(ﬁ{ ./1 (x — cos .¢)6,,

+A(2 8 4+ ¢)sin ¢—§164+a/,.} (28)
+A 0,/ sing+ Eap— B
the current position and velocity of the

active joint to (28), we can calculate the torque £, so

Substituting

that we can control the passive joint from the initial
position to the final position. Next step is the control of
the active joint. The active joint is moved to the final
position with sufficiently small torque which does not
affect the passive one at rest. To keep the rest state of
the passive joint, the angular velocity and acceleration of
the passive joint should be zero, and the torque B has
to satisfy the following' inequality:

@ 218+ Bt Lo B(1+Acos §)— 4 ¢ sin ¢, (29)
At this time the equation of motion of active joint
becomes

p=B+tB,—¢2 ¢ (30)

Thus we can calculate the actuated torque to control

the manipulator to a desired position based on the abhove
equations.

V. Conclusion
A dynamic analysis and motion control of an
underactuated two-link manipulator have been
presented. The dynamic analysis of an underactuated
two-link manipulator based on first integral approach

KO - KiSst - NABISSt ==2A1 M3 & M5 1997.10

was introduced. Also a simple control algorithm based on
the dynamic characteristics of the manipulator was made.
The proposed control algorithm i1s simple and clear, and
can make effective motion control using the dynamic
characteristics positively. Finally the controllability of the
underactuated manipulator under friction effect was
discussed.

% The author wishes to thank Prof. H. Inooka of
Tohoku University for his proper and earnest advices,
and continuous encouragement about this study.
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