• Title/Summary/Keyword: unconsolidated aquifer

Search Result 22, Processing Time 0.017 seconds

Hydrogeological Properties of Uunconsolidated Formations and Bedrocks in the Central Area of Busan Metropolitan City (부산 도심지역 미고결층과 기반암의 수리지질 특성)

  • Hamm Se-Yeong;Cha Yong-Hoon;Cheong Jae-Yeol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.407-421
    • /
    • 2005
  • This study aims to investigate hydrogeological properties of the central area from Yangjeong-Dong to Sujeong-Dong in Busan Metropolitan City. For this study, pumping tests were carried out in the bedrock aquifer of Yangjeong-Dong and the unconsolidated aquifer near Busanjin railway station. The pumping test in the bedrock aquifer containing the Dongrae fault revealed specific hydraulic characteristics with respect to the fault. The pumping test in the unconsolidated aquifer revealed the hydrogeologic properties of both coastal landfill and fine sediments. It was found that the Moench's sphere-shaped dual-porosity model fits the bedrock aquifer, whereas the Neuman's uncofined aquifer model accords with the unconsolidated aquifer. The average transmissivity and storage coefficient of the bedrock aquifer are $2.75{\times}10^{-5}m^2/s\;and\;6.41{\times}10^{-5}$ and those of the unconsolidated aquifer are $8.24{\times}10^{-4}m^2/s\;and\;3.70{\times}10^{-3}$, respectively. On the other hand, slug tests gave average transmissivity and storage coefficient values of $9.84{\times}10^{-4}m^2/s\;and\;1.21{\times}10^{-2}$, respectively.

Improvement of Well Efficiency through Well Development in a Pumping Well (충적층 양수정에서 우물개량을 통한 우물효율의 개선)

  • Kim, Gyoo-Bum;Kim, Byung-Woo;Kim, Sung-Yun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.39-49
    • /
    • 2010
  • Drilling at unconsolidated layer can make the aquifer disturbed and reduce a productivity of groundwater well. Surge block and air surging were applied to a pumping well located in Jeungsan-ri, Changnyung-gun, to improve a well efficiency by removing clogging and fine-grained slime. Two experimental log-linear equations, $y_1=-0.1769\;ln(x_1)+0.4960$ and $y_2=-84.3358\;ln(x_2)+512.8162$, were proposed in this site, in which $x_1$ and $x_2$ are the number of surging event, $y_1$ is the amount of slime, and $y_2$ is a recovery time of groundwater level after air surging. Well loss exponent (P) decreased after surging, from 3.422 to 1.439, and the groundwater inflow from aquifer happened in all directions around a well with gradually increasing the homogeneity in a local aquifer's hydraulic property. It was revealed that long-term well development should be done in the pumping well which is located in unconsolidated sediments to increase a well productivity.

Physiographical, Geological, and Hydraulic Classification of Ground Water Occurrence in the Unconsolidated Formation, with Respect to the Economical Evaluation, in South Korea (우리나라 지하수(地下水) 부존상태(賦存狀態)의 지형학적(地形學的), 지리학적(地理學的) 유형분류(類型分類))

  • Jeong, Bong Il
    • Economic and Environmental Geology
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 1971
  • Economical evaluation of an aquifer in an unconsolidated formation is based on the physiography, geology and hydraulics in it's loci. Since each foundation is controlled by the combination of several factors, these factors in each foundation will be explained in regard to their function, contributing to the yield of ground water from aquifers.

  • PDF

Change of Hydraulic Characteristics due to Well Drilling and Well Development in an Unconsolidated Aquifer (미고결대수층에서 우물 굴착 및 개량에 의한 대수층의 수리특성 변화)

  • Kim, Byung-Woo;Kim, Gyoo-Bum;Kim, Geon-Young
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.27-37
    • /
    • 2012
  • To investigate the effect of aquifer disturbance on hydraulic properties while well drilling at unconsolidated aquifer, the following tests were conducted: the surge block and air-surging methods, which are well development methods used after well drilling; and step-drawdown tests and constant-rate pumping tests, which are used to assess changes in the aquifer after well drilling and development. The result of step-drawdown tests indicated that drawdown for a pumping-rate of $700m^3/day$ was 21.62 m after well development, decreasing 4.39 m from 26.01 m after well drilling. The skin factor used to identify the well properties decreased from 7.92 after well drilling to 5.04 after well development, respectively, which shows the improvement of well. Constant-rate pumping tests revealed a small increase in aquifer transmissivity after well development at MW-2, -3, and -4, centering around pumping well, from $1.684{\times}10^{-3}{\sim}4.490{\times}10^{-3}m^2/sec$ to $4.002{\times}10^{-3}{\sim}4.939{\times}10^{-3}m^2/sec$. MW-1, however, showed decline in hydraulic conductivity from $1.018{\times}10^{-2}m^2/sec$ to $6.988{\times}10^{-3}m^2/sec$, which was caused by a small decrease of aquifer permeability around monitoring well MW-1 due to latent factor of air interception and clogging in aquifer during surging. This finding indicates that fine particles have an effect on hydraulic properties at unconsolidated aquifers during well drilling; therefore, we consider that well drilling and development have an effect on hydraulic properties.

Determination of Hydraulic Conductivities in the Sandy Soil Layer through Cross Correlation Analysis between Rainfall and Groundwater Level (강우-지하수위 상관성 분석을 통한 사질토층의 수리전도도 산정)

  • Park, Seunghyuk;Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.303-314
    • /
    • 2019
  • Surface permeability and shallow geological structures play significant roles in shaping the groundwater recharge of shallow aquifers. Surface permeability can be characterized by two concepts, intrinsic permeability and hydraulic conductivity, with the latter obtained from previous near-surface geological investigations. Here we propose a hydraulic equation via the cross-correlation analysis of the rainfall-groundwater levels using a regression equation that is based on the cross-correlation between the grain size distribution curve for unconsolidated sediments and the rainfall-groundwater levels measured in the Gyeongju area, Korea, and discuss its application by comparing these results to field-based aquifer test results. The maximum cross-correlation equation between the hydraulic conductivity derived from Zunker's observation equation in a sandy alluvial aquifer and the rainfall-groundwater levels increases as a natural logarithmic function with high correlation coefficients (0.95). A 2.83% difference between the field-based aquifer test and root mean square error is observed when this regression equation is applied to the other observation wells. Therefore, rainfall-groundwater level monitoring data as well as aquifer test are very useful in estimating hydraulic conductivity.

A Study of Carvernous Limestone Aquifer of Jeon Cheon Basin (전천 석회암 대수층에 관한 연구)

  • 한종상
    • Water for future
    • /
    • v.16 no.3
    • /
    • pp.171-179
    • /
    • 1983
  • In the Jeon Cheon Basin, unconsolidated alluvium and marine clay beds overlying Tertiary conglomerate and impermeable mudstone, and Cambro-Ordovician sedimentary rocks composed of mainly cavernous limestones, and age-unknowned crystalline rocks are occured. Most productive rock is Cambro-Ordovician limestones containing a lot of solution openings and secondary porosities and shows its transmissivity of 1836$m^2$/day and storativity of 1.47 $\times$ $10^{-3}$. The storage of deep seated groundwater in linestone aquifer is estimated about 1059 $\times$ $10^6$ metric tons, being equivalent to 6 years total precipitation of the basin. The safe yield of the groundwater to be abstracted from the aquifer is about 126,000 tons/day. To pump at least 100,000 tons/day of groundwater from the said aquifer, a well field comprising 34 deep wells ranging in depth from 80 to 100 meter and penetrating the cavernous limestone aquifer shall be established at middle and down stream area.

  • PDF

The Characteristics of Hydrogeological Parameters of Unconsolidated Sediments in the Nakdong River Delta of Busan City, Korea

  • Khakimov, Elyorbek;Chung, Sang Yong;Senapathi, Venkatramanan;Elzain, Hussam Eldin;Son, JooHyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.27-41
    • /
    • 2017
  • This study dealt with the characteristics and the interrelations of hydrogeological parameters such as hydraulic conductivity, dispersivity and effective porosity of unconsolidated sediments for providing the basic data necessary for the planning of the management and preservation of groundwater quality in the Nakdong River Delta of Busan City, Korea. Groundwater quality in this area has been deteriorated due to seawater intrusion, agricultural fertilizer and pesticide, industrial wastewater, and contaminated river water. The physical properties (grain size distribution, sediment type, sorting) and aquifer parameters (hydraulic conductivity, effective porosity, longitudinal dispersivity) were determined from grain size analysis, laboratory permeability test and column tracer test. Among 36 samples, there were 18 Sand (S), 7 Gravelly Sand (gS), 5 Silty Sand (zS), 5 Muddy Sand (mS), and 1 Sandy Silt (sZ). Hydraulic conductivity was determined through a falling head test, and ranged from $9.2{\times}10^{-5}$ to $2.9{\times}10^{-2}cm/sec$ (0.08 to 25.6 m/day). From breakthrough curves, dispersivity was calculated to be 0.35~3.92 cm. Also, effective porosity and average linear velocity were obtained through the column tracer test, and their values were 0.04~0.46 and 1.06E-04~6.49E-02 cm/sec, respectively. Statistical methods were used to understand the interrelations among aquifer parameters of hydraulic conductivity, effective porosity and dispersivity. The relation between dispersivity and hydraulic conductivity or effective porosity considered the sample length, because dispersivity was affected by experimental scale. The relations between dispersivity and hydraulic conductivity or effective porosity were all in inverse proportion for all long and short samples. The reason was because dispersivity was in inverse proportion to the groundwater velocity in case of steady hydrodynamic dispersion coefficient, and groundwater velocity was in proportion to the hydraulic conductivity or effective porosity. This study also elucidated that longitudinal dispersivity was dependent on the scale of column tracer test, and all hydrogeological parameters were low to high values due to the sand quantity of sediments. It is expected that the hydrogeological parameter data of sediments will be very useful for the planning of groundwater management and preservation in the Nakdong River Delta of Busan City, Korea.

Selecting Aquifer Artificial Recharge Methods Based on Characteristics of the Target Aquifer (주입대상 대수층의 특성을 고려한 인공함양 방법 선정 연구)

  • Lee, Yeoung-Dong;Shin, Dong-Min;Kim, Byeong-Jun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.483-494
    • /
    • 2019
  • This study aimed to determine the extent of artificial aquifer recharge and to evaluate appropriate recharge techniques based on field investigations and comparative analysis of each recharge method. Characteristics of the aquifer determine the target aquifer and the recharge method for artificial groundwater recharge. Electrical conductivity surveys, drilling, permeability tests, and grain-size analysis indicate that the hydraulic conductivity of weathered soil and weathered rock is higher than that of upper unconsolidated soil. Pumping tests indicate that the groundwater level was stable at a depth of 12 m until 9 hours of pumping, but after that it dropped again, indicating anisotropic aquifer characteristics. Three types of artificial recharge method were reviewed, including recharge wells, ditches, and ponds, and a combination of two methods is proposed: a recharge well system directly injecting into weathered soil and rock sections with good permeability, and an injection ditch that can increase the recharge effect by line-type injection in the upstream area. The extent of groundwater recharge by the selected methods will be evaluated through on-site tests and if their applicability is verified, they will contribute to securing water in areas of water shortage.

국가 지하수 관측소의 장기관측자료에 의한 지하수 변동 특성

  • 김규범;최영진;유영권;류정아;손영철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.36-39
    • /
    • 2000
  • The Ministry of Construction and Transportation is going to establish 310 groundwater monitoring stations. 154 stations have been established and periodically managed since 1995. Most of stations have two monitoring boreholes which function is to monitor the unconsolidated and bedrock aquifer, and have the automatic monitoring equipment to observe groundwater level, temperature and hydraulic conductivity which are measured four times a day. Especially 44 stations are equipped with the Remote Terminal Unit. MOCT publish "an annual report of Groundwater monitoring stations" every year and everyone can get the monitoring data from Groundwater World web site(http://wamis.kowaco.or.kr/gww/)..kr/gww/).

  • PDF

입도분석과 현장수리시험에 의한 수리전도도의 특성 비교

  • Ham Se-Yeong;Jeong Jae-Yeol;Lee Jeong-Hwan;Kim Hyeong-Su;Han Jeong-Sang
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.446-450
    • /
    • 2005
  • Hydraulic conductivity of unconsolidated media can be determined by aquifer tests, laboratory tests and empirical equations based on grain size analysis. Commonly, the different methods give different hydraulic conductivities. Grain size measurements were done to determine hydraulic conductivity, using 184 soil samples collected from eight boreholes in a riverbank filtration area, Daesan-Myeon, Changwon City, Korea, Pumping tests were conducted at the riverbank filtration area. The average hydraulic conductivity by the empirical relations from grain size measurements comes out around $10^{-2}m/s$, 22 to 55 times higher than by the pumping test analyses. The hydraulic conductivity obtained from the empirical equations is interpreted to have a relationship with steady-state condition while that obtained from the pumping tests is interpreted to have a relationship with unsteady-state condition. Thus, hydraulic conductivity obtained from various methods should be critically analyzed for reasonable management of groundwater development.

  • PDF