• 제목/요약/키워드: translation theorem

검색결과 29건 처리시간 0.028초

TRANSLATION THEOREM ON FUNCTION SPACE

  • Choi, Jae Gil;Park, Young Seo
    • Korean Journal of Mathematics
    • /
    • 제11권1호
    • /
    • pp.17-30
    • /
    • 2003
  • In this paper, we use a generalized Brownian motion process to define a translation theorem. First we establish the translation theorem for function space integrals. We then obtain the general translation theorem for functionals on function space.

  • PDF

TRANSLATION THEOREM FOR THE ANALYTIC FEYNMAN INTEGRAL ASSOCIATED WITH BOUNDED LINEAR OPERATORS ON ABSTRACT WIENER SPACES AND AN APPLICATION

  • Jae Gil Choi
    • 대한수학회지
    • /
    • 제61권5호
    • /
    • pp.1035-1050
    • /
    • 2024
  • The Cameron-Martin translation theorem describes how Wiener measure changes under translation by elements of the Cameron-Martin space in an abstract Wiener space (AWS). Translation theorems for the analytic Feynman integrals also have been established in the literature. In this article, we derive a more general translation theorem for the analytic Feynman integral associated with bounded linear operators (B.L.OP.) on AWSs. To do this, we use a certain behavior which exists between the analytic Fourier-Feynman transform (FFT) and the convolution product (CP) of functionals on AWS. As an interesting application, we apply this translation theorem to evaluate the analytic Feynman integral of the functional $$F(x)={\exp}\left(-iq\int_{0}^{T}x(t)y(t)dt\right),\,y{\in}C_0[0,\,T],\;q{\in}{\mathbb{R}}\,{\backslash}\,\{0\}$$ defined on the classical Wiener space C0[0, T].

AN ANALOGUE OF WIENER MEASURE AND ITS APPLICATIONS

  • Im, Man-Kyu;Ryu, Kun-Sik
    • 대한수학회지
    • /
    • 제39권5호
    • /
    • pp.801-819
    • /
    • 2002
  • In this note, we establish a translation theorem in an analogue of Wiener space (C[0,t],$\omega$$\phi$) and find formulas for the conditional $\omega$$\phi$-integral given by the condition X(x) = (x(to), x(t$_1$),…, x(t$_{n}$)) which is the generalization of Chang and Chang's results in 1984. Moreover, we prove a translation theorem for the conditional $\omega$$\phi$-integral.l.

GENERALIZED CAMERON-STORVICK TYPE THEOREM VIA THE BOUNDED LINEAR OPERATORS

  • Chang, Seung Jun;Chung, Hyun Soo
    • 대한수학회지
    • /
    • 제57권3호
    • /
    • pp.655-668
    • /
    • 2020
  • In this paper, we establish the generalized Cameron-Storvick type theorem on function space. We then give relationships involving the generalized Cameron-Storvick type theorem, modified generalized integral transform and modified convolution product. A motivation of studying the generalized Cameron-Storvick type theorem is to generalize formulas and results with respect to the modified generalized integral transform on function space. From the some theories and formulas in the functional analysis, we can obtain some formulas with respect to the translation theorem of exponential functionals.

DEGREE OF APPROXIMATION TO A SMOOTH FUNCTION BY GENERALIZED TRANSLATION NETWORKS

  • HAHM, NAHMWOO;YANG, MEEHYEA;HONG, BUM IL
    • 호남수학학술지
    • /
    • 제27권2호
    • /
    • pp.225-232
    • /
    • 2005
  • We obtain the approximation order to a smooth function on a compact subset of $\mathbb{R}$ by generalized translation networks. In our study, the activation function is infinitely many times continuously differentiable function but it does not have special properties around ${\infty}$ and $-{\infty}$ like a sigmoidal activation function. Using the Jackson's Theorem, we get the approximation order. Especially, we obtain the approximation order by a neural network with a fixed threshold.

  • PDF

A TRANSLATION THEOREM FOR THE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE

  • Chang, Seung Jun;Choi, Jae Gil;Ko, Ae Young
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.991-1017
    • /
    • 2016
  • In this paper we define a generalized analytic Fourier-Feynman transform associated with Gaussian process on the function space $C_{a,b}[0,T]$. We establish the existence of the generalized analytic Fourier-Feynman transform for certain bounded functionals on $C_{a,b}[0,T]$. We then proceed to establish a translation theorem for the generalized transform associated with Gaussian process.

SOME EXPRESSIONS FOR THE INVERSE INTEGRAL TRANSFORM VIA THE TRANSLATION THEOREM ON FUNCTION SPACE

  • Chang, Seung Jun;Chung, Hyun Soo
    • 대한수학회지
    • /
    • 제53권6호
    • /
    • pp.1261-1273
    • /
    • 2016
  • In this paper, we analyze the necessary and sufficient condition introduced in [5]: that a functional F in $L^2(C_{a,b}[0,T])$ has an integral transform ${\mathcal{F}}_{{\gamma},{\beta}}F$, also belonging to $L^2(C_{a,b}[0,T])$. We then establish the inverse integral transforms of the functionals in $L^2(C_{a,b}[0,T])$ and then examine various properties with respect to the inverse integral transforms via the translation theorem. Several possible outcomes are presented as remarks. Our approach is a new method to solve some difficulties with respect to the inverse integral transform.

EVALUATION FORMULA FOR WIENER INTEGRAL OF POLYNOMIALS IN TERMS OF NATURAL DUAL PAIRINGS ON ABSTRACT WIENER SPACES

  • Chang, Seung Jun;Choi, Jae Gil
    • 대한수학회보
    • /
    • 제59권5호
    • /
    • pp.1093-1103
    • /
    • 2022
  • In this paper, we establish an evaluation formula to calculate the Wiener integral of polynomials in terms of natural dual pairings on abstract Wiener spaces (H, B, 𝜈). To do this we first derive a translation theorem for the Wiener integral of functionals associated with operators in 𝓛(B), the Banach space of bounded linear operators from B to itself. We then apply the translation theorem to establish an integration by parts formula for the Wiener integral of functionals combined with operators in 𝓛(B). We finally apply this parts formula to evaluate the Wiener integral of certain polynomials in terms of natural dual pairings.

CONDITIONAL ABSTRACT WIENER INTEGRALS OF CYLINDER FUNCTIONS

  • Chang, Seung-Jun;Chung, Dong-Myung
    • 대한수학회보
    • /
    • 제36권3호
    • /
    • pp.419-439
    • /
    • 1999
  • In this paper, we first develop a general formula for evaluating conditional abstract Wiener integrals of cylinder functions. we next use our formula to evaluate the conditional abstract wiener integral of various cylinder functions and then specialize our results to conditional Yeh-Wiener integrals to show that we can obtain the corresponding results by Park and Skoug. We finally obtain a Cameron-Martin translation theorem for conditional abstract Wiener integrals.

  • PDF