TRANSLATION THEOREM ON FUNCTION SPACE

Jae Gil Choi and Young Seo Park

Abstract

In this paper, we use a generalized Brownian motion process to define a translation theorem. First we establish the translation theorem for function space integrals. We then obtain the general translation theorem for functionals on function space.

1. Introduction.

In [1], Cameron and Martin introduced the transformation of Wiener integrals under the translation. In [4], Chang, Skoug and Park studied translation theorems for Fourier-Feynman transforms and conditional Fourier-Feynman transforms.

In this paper, we study a translation theorem for functionals on function space but with x in a very general function space $C_{a, b}[0, T]$ rather than in the Wiener space. The Wiener process used in $[1,4]$ is free of drift and is stationary in time while the stochastic processes used in this paper is nonstationary in time and is subject to a drift $a(t)$.

In Section 2 of this paper, we give the basic concepts and notations. In Section 3, we study a translation theorem for function space integrals. Finally, in Section 4, we establish the general translation theorem for functionals on function space.

2. Definitions and preliminaries.

Let $D=[0, T]$ and let (Ω, \mathcal{B}, P) be a probability measure space. A real valued stochastic process Y on (Ω, \mathcal{B}, P) and D is called a generalized Brownian motion process if $Y(0, \omega)=0$ almost everywhere and

Received January 3, 2003.
2000 Mathematics Subject Classification: 60J65,28C20.
Key words and phrases: Generalized Brownian motion process, function space, function space integrals, translation theorem.
for $0=t_{0}<t_{1}<\cdots<t_{n} \leq T$, the n-dimensional random vector $\left(Y\left(t_{1}, \omega\right), \cdots, Y\left(t_{n}, \omega\right)\right)$ is normally distributed with density function

$$
\begin{align*}
K(\vec{t}, \vec{\eta}) & =\left((2 \pi)^{n} \prod_{j=1}^{n}\left(b\left(t_{j}\right)-b\left(t_{j-1}\right)\right)\right)^{-1 / 2} \tag{2.1}\\
& \cdot \exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(\left(\eta_{j}-a\left(t_{j}\right)\right)-\left(\eta_{j-1}-a\left(t_{j-1}\right)\right)\right)^{2}}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\right\}
\end{align*}
$$

where $\vec{\eta}=\left(\eta_{1}, \cdots, \eta_{n}\right), \eta_{0}=0, \vec{t}=\left(t_{1}, \cdots, t_{n}\right), a(t)$ is an absolutely continuous real-valued function on $[0, T]$ with $a(0)=0, a^{\prime}(t) \in L^{2}[0, T]$, and $b(t)$ is a strictly increasing, continuously differentiable real-valued function with $b(0)=0$ and $b^{\prime}(t)>0$ for each $t \in[0, T]$.

As explained in [8, p.18-20], Y induces a probability measure μ on the measurable space $\left(\mathbb{R}^{D}, \mathcal{B}^{D}\right)$ where \mathbb{R}^{D} is the space of all real valued functions $x(t), t \in D$, and \mathcal{B}^{D} is the smallest σ-algebra of subsets of \mathbb{R}^{D} with respect to which all the coordinate evaluation maps $e_{t}(x)=x(t)$ defined on \mathbb{R}^{D} are measurable. The triple $\left(\mathbb{R}^{D}, \mathcal{B}^{D}, \mu\right)$ is a probability measure space. This measure space is called the function space induced by the generalized Brownian motion process Y determined by $a(\cdot)$ and $b(\cdot)$.

We note that the generalized Brownian motion process Y determined by $a(\cdot)$ and $b(\cdot)$ is a Gaussian process with mean function $a(t)$ and covariance function $r(s, t)=\min \{b(s), b(t)\}$. By Theorem 14.2 [8, p.187], the probability measure μ induced by Y, taking a separable version, is supported by $C_{a, b}[0, T]$ (which is equivalent to the Banach space of continuous functions x on $[0, T]$ with $x(0)=0$ under the sup norm). Hence ($C_{a, b}[0, T], \mathcal{B}\left(C_{a, b}[0, T]\right), \mu$) is the function space induced by Y where $\mathcal{B}\left(C_{a, b}[0, T]\right)$ is the Borel σ-algebra of $C_{a, b}[0, T]$.

Let $L_{a, b}^{2}[0, T]$ be the Hilbert space of functions on $[0, T]$ which are Lebesgue measurable and square integrable with respect to the Lebesgue Stieltjes measures on $[0, T]$ induced by $a(\cdot)$ and $b(\cdot)$: i.e.,

$$
\begin{equation*}
L_{a, b}^{2}[0, T]=\left\{v: \int_{0}^{T} v^{2}(s) d b(s)<\infty \text { and } \int_{0}^{T} v^{2}(s) d|a|(s)<\infty\right\} \tag{2.2}
\end{equation*}
$$

where $|a|(t)$ denotes the total variation of the function a on the interval $[0, t]$.

For convenience, let $B V[0, T]$ be the space of bounded variation functions on $[0, T]$. We denote the function space integral of a $\mathcal{B}\left(C_{a, b}[0, T]\right)$-measurable functional F by

$$
\int_{C_{a, b}[0, T]} F(x) d \mu(x)
$$

whenever the integral exists.

3. Translation theorem for function space integrals.

Let $\left(C_{a, b}[0, T], \mathcal{B}\left(C_{a, b}[0, T]\right), \mu\right)$ be the function space induced by the generalized Brownian motion process defined in Section 1. In this section we will obtain a translation theorem for function space integrals over $\left(C_{a, b}[0, T], \mathcal{B}\left(C_{a, b}[0, T]\right), \mu\right)$.

For a partition $\tau=\left\{t_{1}, \cdots, t_{n}\right\}$ of $[0, T]$ with $0=t_{0}<t_{1}<$ $\cdots<t_{n}=T$, define a function $X_{\tau}: C_{a, b}[0, T] \longrightarrow \mathbb{R}^{n}$ by $X_{\tau}(x)=\left(x\left(t_{1}\right), \cdots, x\left(t_{n}\right)\right)$. For $x \in C_{a, b}[0, T]$, define the function $\left[X_{\tau}(x)\right] \equiv[x]_{n}:[0, T] \longrightarrow \mathbf{R}$ by

$$
\begin{equation*}
[x]_{n}(t)=x\left(t_{j-1}\right)+\frac{b(t)-b\left(t_{j-1}\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\left(x\left(t_{j}\right)-x\left(t_{j-1}\right)\right) \tag{3.1}
\end{equation*}
$$

for each $t \in\left[t_{j-1}, t_{j}\right], j=1,2, \cdots, n$. In case, $[x]_{n}$ is called the polygonalized form of x. Similarly, for $\vec{\xi}=\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right) \in \mathbf{R}^{n}$, define the function $[\vec{\xi}]_{n}:[0, T] \longrightarrow \mathbf{R}$ by

$$
\begin{equation*}
[\vec{\xi}]_{n}(t)=\xi_{j-1}+\frac{b(t)-b\left(t_{j-1}\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\left(\xi_{j}-\xi_{j-1}\right) \tag{3.2}
\end{equation*}
$$

for each $t \in\left[t_{j-1}, t_{j}\right], j=1,2, \cdots, n$, and $\xi_{0}=0$.
For any positive integer n, define the point t_{j} by

$$
t_{j}=\frac{T}{n} j
$$

where $j=1,2, \cdots, n$.

Lemma 3.1. Let $[x]_{n}$ be the polygonalized form of x as in (3.1) and let F be a bounded and continuous functional on $C_{a, b}[0, T]$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{C_{a, b}[0, T]} F\left([x]_{n}\right) d \mu(x)=\int_{C_{a, b}[0, T]} F(x) d \mu(x) \tag{3.3}
\end{equation*}
$$

Proof. Let $\varepsilon>0$ be given. For any $x \in C_{a, b}[0, T]$, there exists an integer $n_{0}=n_{0}(\varepsilon)$ such that for all $\left|t^{\prime}-t^{\prime \prime}\right| \leq 1 / n_{0}$, we have

$$
\begin{equation*}
\left|x\left(t^{\prime}\right)-x\left(t^{\prime \prime}\right)\right|<\frac{\varepsilon}{2} \tag{3.4}
\end{equation*}
$$

By using (3.1) and (3.4), we have for each $n \geq n_{0}$ and $t_{j-1} \leq t \leq t_{j}$,

$$
\begin{align*}
\left|x(t)-[x]_{n}(t)\right| & =\left|x(t)-x\left(t_{j-1}\right)-\frac{b(t)-b\left(t_{j-1}\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\left(x\left(t_{j}\right)-x\left(t_{j-1}\right)\right)\right| \tag{3.5}\\
& \leq\left|x(t)-x\left(t_{j-1}\right)\right|+\left|\frac{b\left(t_{j}\right)-b\left(t_{j-1}\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\right|\left|x\left(t_{j}\right)-x\left(t_{j-1}\right)\right| \\
& \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{align*}
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty}[x]_{n}(t)=x(t) \tag{3.6}
\end{equation*}
$$

uniformly on $[0, T]$. Since F is continuous on $C_{a, b}[0, T]$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F\left([x]_{n}\right)=F(x) \tag{3.7}
\end{equation*}
$$

Let $F_{n}(x)=F\left([x]_{n}\right)$. Then for all $n \in \mathbb{N},\left|F_{n}\right|=|F|$. So, by using the Bounded Convergence Theorem, we have the desired result.

Lemma 3.2. Let $\varphi(t)$ be of bounded variation function on $[0, T]$ and let $x_{0}(t)=\int_{0}^{t} \varphi(s) d b(s)$. Then $x_{0} \in C_{a, b}[0, T]$ and we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{\left(x_{0}\left(t_{j}\right)-x_{0}\left(t_{j-1}\right)\right)^{2}}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}=\int_{0}^{T} \varphi^{2}(s) d b(s) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{\left(\left(x\left(t_{j}\right)-a\left(t_{j}\right)\right)-\left(x\left(t_{j-1}\right)-a\left(t_{j-1}\right)\right)\right)\left(x_{0}\left(t_{j}\right)-x_{0}\left(t_{j-1}\right)\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)} \tag{3.9}\\
\quad=\int_{0}^{T} \varphi(s) d x(s)-\int_{0}^{T} \varphi(s) d a(s)
\end{gather*}
$$

Proof. Since $\varphi \in B V[0, T], x_{0}(t)=\int_{0}^{t} \varphi(s) d b(s)$ is absolutely continuous on $[0, T]$. Observe that

$$
\begin{aligned}
& \sum_{j=1}^{n} \frac{\left(x_{0}\left(t_{j}\right)-x_{0}\left(t_{j-1}\right)\right)^{2}}{b\left(t_{j}\right)-b\left(t_{j-1}\right)} \\
& \quad=\sum_{j=1}^{n}\left(\frac{x_{0}\left(t_{j}\right)-x_{0}\left(t_{j-1}\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\right)^{2}\left(b\left(t_{j}\right)-b\left(t_{j-1}\right)\right)
\end{aligned}
$$

By using the Cauchy's Mean Value Theorem in the above equation, we have

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\left(x_{0}\left(t_{j}\right)-x_{0}\left(t_{j-1}\right)\right)^{2}}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}=\sum_{j=1}^{n} \varphi^{2}\left(\xi_{j}\right)\left(b\left(t_{j}\right)-b\left(t_{j-1}\right)\right) \tag{3.10}
\end{equation*}
$$

where $\xi_{j} \in\left[t_{j-1}, t_{j}\right]$ for each $j=1,2, \cdots, n$. Similarly, we have

$$
\begin{align*}
& \sum_{j=1}^{n} \frac{\left(\left(x\left(t_{j}\right)-a\left(t_{j}\right)\right)-\left(x\left(t_{j-1}\right)-a\left(t_{j-1}\right)\right)\right)\left(x_{0}\left(t_{j}\right)-x_{0}\left(t_{j-1}\right)\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)} \\
& =\sum_{j=1}^{n}\left(\frac{x_{0}\left(t_{j}\right)-x_{0}\left(t_{j-1}\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\right)\left(x\left(t_{j}\right)-x\left(t_{j-1}\right)\right) \\
& \quad \quad-\sum_{j=1}^{n}\left(\frac{x_{0}\left(t_{j}\right)-x_{0}\left(t_{j-1}\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\right)\left(a\left(t_{j}\right)-a\left(t_{j-1}\right)\right) \tag{3.11}\\
& =\sum_{j=1}^{n} \varphi\left(\xi_{j}\right)\left(x\left(t_{j}\right)-x\left(t_{j-1}\right)\right)-\sum_{j=1}^{n} \varphi\left(\xi_{j}\right)\left(a\left(t_{j}\right)-a\left(t_{j-1}\right)\right) .
\end{align*}
$$

Hence equations (3.10) and (3.11) converge to the followings

$$
\int_{0}^{T} \varphi^{2}(s) d b(s) \text { and } \int_{0}^{T} \varphi(s) d x(s)-\int_{0}^{T} \varphi(s) d a(s)
$$

as $n \rightarrow \infty$, respectively. Thus we have the desired results.
Theorem 3.3. Let φ and x_{0} be given as in Lemma 3.2 and let F be a $\mathcal{B}\left(C_{a, b}[0, T]\right)$-measurable functional. Then $F\left(x+x_{0}\right)$ is $\mathcal{B}\left(C_{a, b}[0, T]\right)$ measurable and

$$
\begin{equation*}
\int_{C_{a, b}[0, T]} F(y) d \mu(y)=\int_{C_{a, b}[0, T]} F\left(x+x_{0}\right) J\left(x, x_{0}\right) d \mu(x) \tag{3.12}
\end{equation*}
$$

where
$J\left(x, x_{0}\right)=\exp \left\{-\frac{1}{2} \int_{0}^{T} \varphi^{2}(s) d b(s)+\int_{0}^{T} \varphi(s) d a(s)-\int_{0}^{T} \varphi(s) d x(s)\right\}$.
Proof. It suffices to show the case in which the functional F is bounded on $C_{a, b}[0, T]$. Let us first consider the case F is bounded, continuous, and $F(y)=0$ for any $y \in\left\{x \in C_{a, b}[0, T]:\|x\|>M\right\}$ where $M>0$. Then $F\left(x+x_{0}\right)$ is measurable and there exists a positive real number K such that $|F(x)| \leq K$ for all $x \in C_{a, b}[0, T]$.

Let $\tau: 0=t_{0}<t_{1}<\cdots<t_{n}=T$ be a partition of $[0, T]$. Define a function G on \mathbb{R}^{n} by $G(\vec{\xi})=F\left([\vec{\xi}]_{n}\right)$ for each $\vec{\xi} \in \mathbb{R}^{n}$. Then G is bounded and continuous. Hence we see that

$$
\begin{equation*}
F\left([y]_{n}\right)=G\left(y\left(t_{1}\right), \cdots, y\left(t_{n}\right)\right) . \tag{3.14}
\end{equation*}
$$

By using (3.14) and the Change of Variables Theorem, we have (3.15)

$$
\begin{aligned}
& \int_{C_{a, b}[0, T]} F\left([y]_{n}\right) d \mu(y) \\
& =\int_{C_{a, b}[0, T]} G\left(y\left(t_{1}\right), \cdots, y\left(t_{n}\right)\right) d \mu(y) \\
& =\int_{\mathbb{R}^{n}}\left((2 \pi)^{n} \prod_{j=1}^{n}\left(b\left(t_{j}\right)-b\left(t_{j-1}\right)\right)\right)^{-1 / 2} G\left(v_{1}, \cdots, v_{n}\right) \\
& \quad \cdot \exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(\left(v_{j}-a\left(t_{j}\right)\right)-\left(v_{j-1}-a\left(t_{j-1}\right)\right)\right)^{2}}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\right\} d \vec{v}
\end{aligned}
$$

Let $\beta_{j}=x_{0}\left(t_{j}\right)$ and $u_{j}=v_{j}-\beta_{j}$. Then we see that

$$
\begin{align*}
F\left(\left[x+x_{0}\right]_{n}\right) & =G\left(x\left(t_{1}\right)+x_{0}\left(t_{1}\right), \cdots, x\left(t_{n}\right)+x_{0}\left(t_{n}\right)\right) \\
& \left.=G\left(x\left(t_{1}\right)+\beta_{1}, \cdots, x\left(t_{n}\right)+\beta_{n}\right)\right) \tag{3.16}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\left(v_{j}-a\left(t_{j}\right)\right)-\left(v_{j-1}-a\left(t_{j-1}\right)\right)\right)^{2} \\
& =\left(\left(u_{j}-a\left(t_{j}\right)\right)-\left(u_{j-1}-a\left(t_{j-1}\right)\right)\right)^{2}+\left(\beta_{j}-\beta_{j-1}\right)^{2} \tag{3.17}\\
& \quad+2\left(\beta_{j}-\beta_{j-1}\right)\left(\left(u_{j}-a\left(t_{j}\right)\right)-\left(u_{j-1}-a\left(t_{j-1}\right)\right)\right) .
\end{align*}
$$

By applying (3.16) and (3.17) above to the last equation of (3.15), we have

$$
\begin{align*}
& \int_{C_{a, b}[0, T]} F\left([y]_{n}\right) d \mu(y) \\
& =\exp \left\{-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(x_{0}\left(t_{j}\right)-x_{0}\left(t_{j-1}\right)\right)^{2}}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\right\} \int_{C_{a, b}[0, T]} F\left(\left[x+x_{0}\right]_{n}\right) \tag{3.18}\\
& \quad \cdot \exp \left\{-\sum_{j=1}^{n} \frac{\left(\left(x\left(t_{j}\right)-a\left(t_{j}\right)\right)-\left(x\left(t_{j-1}\right)-a\left(t_{j-1}\right)\right)\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\right. \\
& \left.\cdot\left(x_{0}\left(t_{j}\right)-x_{0}\left(t_{j-1}\right)\right)\right\} d \mu(x)
\end{align*}
$$

Assume that $x+x_{0} \notin\left\{x \in C_{a, b}[0, T]:\|y\|>M\right\}$. Then we see that

$$
\left\|\left[x+x_{0}\right]_{n}\right\| \leq\left\|x+x_{0}\right\| \leq M
$$

and so we have

$$
\begin{equation*}
\left|x\left(t_{j}\right)\right| \leq\left|x_{0}\left(t_{j}\right)\right|+\left|x\left(t_{j}\right)+x_{0}\left(t_{j}\right)\right| \leq\left\|x_{0}\right\|+M \tag{3.19}
\end{equation*}
$$

for any $x \in C_{a, b}[0, T]$. By using (3.11) and (3.19), we obtain that

$$
\begin{aligned}
& \left|\sum_{j=1}^{n} \frac{\left(\left(x\left(t_{j}\right)-a\left(t_{j}\right)\right)-\left(x\left(t_{j-1}\right)-a\left(t_{j-1}\right)\right)\right)\left(x_{0}\left(t_{j}\right)-x_{0}\left(t_{j-1}\right)\right)}{b\left(t_{j}\right)-b\left(t_{j-1}\right)}\right| \\
& =\left|\sum_{j=1}^{n} \varphi\left(\xi_{j}\right)\left(x\left(t_{j}\right)-x\left(t_{j-1}\right)\right)-\sum_{j=1}^{n} \varphi\left(\xi_{j}\right)\left(a\left(t_{j}\right)-a\left(t_{j-1}\right)\right)\right| \\
& \begin{aligned}
& \leq\left|\sum_{j=1}^{n} \varphi\left(\xi_{j}\right)\left(x\left(t_{j}\right)-x\left(t_{j-1}\right)\right)\right|+\left|\sum_{j=1}^{n} \varphi\left(\xi_{j}\right)\left(a\left(t_{j}\right)-a\left(t_{j-1}\right)\right)\right| \\
&=\left|\varphi\left(\xi_{n}\right) x\left(t_{n}\right)-\sum_{j=1}^{n}\left(\varphi\left(\xi_{j}\right)-\varphi\left(\xi_{j-1}\right)\right) x\left(t_{j-1}\right)\right| \\
& \quad \quad+\left|\varphi\left(\xi_{n}\right) a\left(t_{n}\right)-\sum_{j=1}^{n}\left(\varphi\left(\xi_{j}\right)-\varphi\left(\xi_{j-1}\right)\right) a\left(t_{j-1}\right)\right| \\
& \leq\left|\varphi\left(\xi_{n}\right)\right|\left|x\left(t_{n}\right)\right|+\sum_{j=1}^{n}\left|\varphi\left(\xi_{j}\right)-\varphi\left(\xi_{j-1}\right)\right|\left|x\left(t_{j-1}\right)\right|
\end{aligned} \\
& \quad+\left|\varphi\left(\xi_{n}\right)\right|\left|a\left(t_{n}\right)\right|+\sum_{j=1}^{n}\left|\varphi\left(\xi_{j}\right)-\varphi\left(\xi_{j-1}\right)\right|\left|a\left(t_{j-1}\right)\right| \\
& \leq\left(\left\|x_{0}\right\|+M+\|a\|\right) \mid\left(\|\varphi\|+V_{0}^{T}(\varphi)\right)
\end{aligned}
$$

where $V_{0}^{T}(\varphi)$ is the total variation of φ on $[0, T]$. So the integrand of (3.18) is bounded by the following

$$
K \exp \left\{\left(\left\|x_{0}\right\|+M+\|a\|\right)\left(\|\varphi\|+V_{0}^{T}(\varphi)\right)\right\}
$$

Thus, by using the Bounded Convergence Theorem, (3.8), and (3.9), the expression (3.17) converges to

$$
\begin{aligned}
& \exp \left\{-\frac{1}{2} \int_{0}^{T} \varphi^{2}(s) d b(s)\right\} \\
& \cdot \int_{C_{a, b}[0, T]} F\left(x+x_{0}\right) \exp \left\{-\int_{0}^{T} \varphi(s) d x(s)+\int_{0}^{T} \varphi(s) d a(s)\right\} d \mu(x)
\end{aligned}
$$

Hence by using Lemma 2.1, we obtain the equation (3.12) above.

Now, let F be a nonnegative, bounded and continuous functional on $C_{a, b}[0, T]$. For each $n \in \mathbb{N}$, define the function M_{n} by

$$
M_{n}(u)= \begin{cases}1 & (0 \leq u \leq n) \\ n+1-u & (n \leq u \leq n+1) \\ 0 & (n+1 \leq u)\end{cases}
$$

Then M_{n} is a continuous real valued function. Let $F_{n}(x)=$ $F(x) M_{n}(\|x\|)$. Then F_{n} satisfies the hypothesis of the first case. So proceeding as in the proof above, we obtain

$$
\begin{array}{r}
\int_{C_{a, b}[0, T]} F_{n}(y) d \mu(y)=\exp \left\{-\frac{1}{2} \int_{0}^{T} \varphi^{2}(s) d b(s)+\int_{0}^{T} \varphi(s) d a(s)\right\} \\
\cdot \int_{C_{a, b}[0, T]} F_{n}\left(x+x_{0}\right) \exp \left\{-\int_{0}^{T} \varphi(s) d x(s)\right\} d \mu(x)
\end{array}
$$

Since $\left\{F_{n}\right\}$ is a monotone increasing sequence of functionals, $F_{n} \rightarrow F$ as $n \rightarrow \infty$. Hence by using the Monotone Convergence Theorem, we have the desired result.

Theorem 3.4. Let φ, x_{0}, and F be given as in Theorem 3.3. Then

$$
\begin{gathered}
\int_{C_{a, b}[0, T]} F\left(x+x_{0}\right) d \mu(x)=\exp \left\{-\frac{1}{2} \int_{0}^{T} \varphi^{2}(s) d b(s)-\int_{0}^{T} \varphi(s) d a(s)\right\} \\
\cdot \int_{C_{a, b}[0, T]} F(x) \exp \left\{\int_{0}^{T} \varphi(s) d x(s)\right\} d \mu(x)
\end{gathered}
$$

Proof. Let $G(x)=F(x) \exp \left\{\int_{0}^{T} \varphi(s) d x(s)\right\}$. Then by using equa-
tion (2.12), we have

$$
\begin{aligned}
& \int_{C_{a, b}[0, T]} F(x) \exp \left\{\int_{0}^{T} \varphi(s) d x(s)\right\} d \mu(x) \\
& =\int_{C_{a, b}[0, T]} G(x) d \mu(x) \\
& =\int_{C_{a, b}[0, T]} G\left(x+x_{0}\right) J\left(x, x_{0}\right) d \mu(x) \\
& =\int_{C_{a, b}[0, T]} F\left(x+x_{0}\right) \exp \left\{\int_{0}^{T} \varphi(s) d\left(x(s)+x_{0}(s)\right)\right\} \\
& \cdot \exp \left\{-\frac{1}{2} \int_{0}^{T} \varphi^{2}(s) d b(s)+\int_{0}^{T} \varphi(s) d a(s)-\int_{0}^{T} \varphi(s) d x(s)\right\} d \mu(x) \\
& =\exp \left\{\frac{1}{2} \int_{0}^{T} \varphi^{2}(s) d b(s)+\int_{0}^{T} \varphi(s) d a(s)\right\} \int_{C_{a, b}[0, T]} F\left(x+x_{0}\right) d \mu(x)
\end{aligned}
$$

Hence we have the desired result.

4. The general translation theorem

In this section we consider the general translation theorem for functionals on $C_{a, b}[0, T]$.

For $u, v \in L_{a, b}^{2}[0, T]$, let

$$
(u, v)_{a, b}=\int_{0}^{T} u(t) v(t) d[b(t)+|a|(t)]
$$

Then $(\cdot, \cdot)_{a, b}$ is an inner product on $L_{a, b}^{2}[0, T]$ and $\|u\|_{a, b}=\sqrt{(u, u)_{a, b}}$ is a norm on $L_{a, b}^{2}[0, T]$. In particular note that $\|u\|_{a, b}=0$ if and only if $u(t)=0$ a.e. on $[0, T]$. Furthermore ($L_{a, b}^{2}[0, T],\|\cdot\|_{a, b}$) is a separable Hilbert space.

Let $\left\{e_{j}\right\}_{j=1}^{\infty}$ be a complete orthogonal set of real-valued functions of bounded variation on $[0, T]$ such that

$$
\left(e_{j}, e_{k}\right)_{a, b}= \begin{cases}0 & , j \neq k \\ 1 & , j=k\end{cases}
$$

and for each $v \in L_{a, b}^{2}[0, T]$, let

$$
v_{n}(t)=\sum_{j=1}^{n}\left(v, e_{j}\right)_{a, b} e_{j}(t)
$$

for $n=1,2, \cdots$. Then for each $v \in L_{a, b}^{2}[0, T]$, the Paley-WienerZygmund(PWZ) stochastic integral $\langle v, x\rangle$ is defined by the formula

$$
\langle v, x\rangle=\lim _{n \rightarrow \infty} \int_{0}^{T} v_{n}(t) d x(t)
$$

for all $x \in C_{a, b}[0, T]$ for which the limit exists.
Remark 4.1. Following are some facts about the PWZ stochastic integral
(i) For each $v \in L_{a, b}^{2}[0, T]$, the PWZ integral $\langle v, x\rangle$ exists for μ-a.e. $x \in C_{a, b}[0, T]$.
(ii) The PWZ integral $\langle v, x\rangle$ is essentially independent of the complete orthonormal set $\left\{e_{j}\right\}_{j=1}^{\infty}$.
(iii) If $v \in B V[0, T]$, then PWZ integral $\langle v, x\rangle$ equals the Riemann -Stieltjes integral $\int_{0}^{T} v(s) d x(s)$ for s-a.e. $x \in C_{a, b}[0, T]$.
(iv) The PWZ integral has the expected linearity properties.

Lemma 4.1. Let $\varphi_{n} \in C_{a, b}[0, T] \cap B V[0, T]$ for each $n \in \mathbb{N}$ and let φ_{n} converge in the space $L_{a, b}^{2}[0, T]$ as $n \rightarrow \infty$. Then for any real number $\lambda, \exp \left\{\lambda \int_{0}^{T} \varphi_{n}(t) d x(t)\right\}$ converges in the space $L^{2}\left(C_{a, b}[0, T]\right)$ as $n \rightarrow \infty$.

Proof. The proof given in [3] with the current hypotheses on $a(t)$ and $b(t)$ also works here.

Now, we obtain the general translation theorem of a functional on $C_{a, b}[0, T]$.

Theorem 4.2. Let $\varphi(t) \in L_{a, b}^{2}[0, T]$ and let $x_{0}(t)=\int_{0}^{t} \varphi(s) d b(s)$. If F be a $\mathcal{B}\left(C_{a, b}[0, T]\right)$-measurable functional on $C_{a, b}[0, T]$, then $F\left(x+x_{0}\right)$ is $\mathcal{B}\left(C_{a, b}[0, T]\right)$-measurable and

$$
\begin{align*}
\int_{C_{a, b}[0, T]} F(y) d \mu(y) & =\exp \left\{-\frac{1}{2}\left(\varphi^{2}, b^{\prime}\right)+\left(\varphi, a^{\prime}\right)\right\} \tag{4.1}\\
& \cdot \int_{C_{a, b}[0, T]} F\left(x+x_{0}\right) \exp \{-\langle\varphi, x\rangle\} d \mu(x)
\end{align*}
$$

where

$$
\left(\varphi^{2}, b^{\prime}\right)=\int_{0}^{T} \varphi^{2}(t) b^{\prime}(t) d t=\int_{0}^{T} \varphi(t) d b(t)
$$

and

$$
\left(\varphi, a^{\prime}\right)=\int_{0}^{T} \varphi(t) a^{\prime}(t) d t=\int_{0}^{T} \varphi(t) d a(t)
$$

Proof. It suffices to show the case in which the functional F is bounded and continuous on $C_{a, b}[0, T]$. Let $\left\{e_{j}\right\}_{j=1}^{\infty}$ be complete orthonormal set in $L_{a, b}^{2}[0, T]$ with $e_{j} \in C_{a, b}[0, T] \cap B V[0, T]$ for each $j \in \mathbb{N}$. For each $n \in \mathbb{N}$, let

$$
\begin{equation*}
\varphi_{n}(t)=\sum_{j=1}^{n}\left(\varphi, e_{j}\right)_{a, b} e_{j}(t) \tag{4.2}
\end{equation*}
$$

Then $\varphi_{n} \in C_{a, b}[0, T] \cap B V[0, T]$ and

$$
\begin{equation*}
\left\|\varphi_{n}-\varphi\right\|_{a, b} \longrightarrow 0 \tag{4.3}
\end{equation*}
$$

as $n \rightarrow \infty$. For each $n \in \mathbb{N}$, define

$$
\begin{equation*}
x_{0, n}(t)=\int_{0}^{t} \varphi_{n}(s) d b(s) \tag{4.4}
\end{equation*}
$$

Then, by using equation (3.12), we see that

$$
\begin{align*}
& \int_{C_{a, b}[0, T]} F(y) d \mu(y) \tag{4.5}\\
& =\exp \left\{-\frac{1}{2} \int_{0}^{T} \varphi_{n}^{2}(s) d b(s)+\int_{0}^{T} \varphi_{n}(s) d a(s)\right\} \\
& \quad \cdot \int_{C_{a, b}[0, T]} F\left(x+x_{0, n}\right) \exp \left\{-\int_{0}^{T} \varphi_{n}(s) d x(s)\right\} d \mu(x) .
\end{align*}
$$

By using Cauchy-Schwarz inequality, we have

$$
\begin{align*}
\left|x_{0}(t)-x_{0, n}(t)\right| & =\left|\int_{0}^{t}\left(\varphi(s)-\varphi_{n}(s)\right) d b(s)\right| \\
& \leq \int_{0}^{T}\left|\left(\varphi(s)-\varphi_{n}(s)\right) \chi_{[0, t]}(s)\right| d[b(s)+|a|(s)] \tag{4.6}\\
& \leq\left\|\varphi-\varphi_{n}\right\|_{a, b} \sqrt{b(t)+|a|(t)} \\
& \leq\left\|\varphi-\varphi_{n}\right\|_{a, b} \sqrt{b(T)+|a|(T)} .
\end{align*}
$$

Hence by using (4.6) and (4.3), we obtain that

$$
\begin{equation*}
\left\|x_{0}-x_{0, n}\right\| \longrightarrow 0 . \tag{4.7}
\end{equation*}
$$

Thus for all $x \in C_{a, b}[0, T]$

$$
\begin{equation*}
F\left(x+x_{0, n}\right) \longrightarrow F\left(x+x_{0}\right) . \tag{4.8}
\end{equation*}
$$

Since F is bounded, by applying the Bounded Convergence Theorem, we have

$$
\begin{equation*}
\int_{C_{a, b}[0, T]}\left|F\left(x+x_{0, n}\right)-F\left(x+x_{0}\right)\right|^{2} d \mu(x) \longrightarrow 0 . \tag{4.9}
\end{equation*}
$$

Note that

$$
\int_{0}^{T} \varphi_{n}(t) d x(t) \longrightarrow\langle\varphi, x\rangle \quad \mu-\text { a.e. } x \in C_{a, b}[0, T] .
$$

So by using (4.3) and Lemma 4.1 with $\lambda=-1$

$$
\exp \left\{-\int_{0}^{T} \varphi_{n}(t) d x(t)\right\} \longrightarrow \exp \{-\langle\varphi, x\rangle\}
$$

in the space $L^{2}\left(C_{a, b}[0, T]\right)$. Further, by equation (4.9) above, we obtain

$$
\begin{align*}
\int_{C_{a, b}[0, T]} & F\left(x+x_{0, n}\right) \exp \left\{-\int_{0}^{T} \varphi_{n}(t) d x(t)\right\} d \mu(x) \tag{4.10}\\
& \longrightarrow \int_{C_{a, b}[0, T]} F\left(x+x_{0}\right) \exp \{-\langle\varphi, x\rangle\} d \mu(x) .
\end{align*}
$$

Hence by using equations (4.5) and (4.10) we have the desired equation (4.1).

We next use Theorem 4.2 to evaluate a translation theorem of functionals on $C_{a, b}[0, T]$.

Theorem 4.3. Let φ, x_{0}, and F be given as in Theorem 4.2. Then

$$
\begin{aligned}
& \int_{C_{a, b}[0, T]} F\left(x+x_{0}\right) d \mu(x) \\
& \quad=\exp \left\{-\frac{1}{2}\left(\varphi^{2}, b^{\prime}\right)-(\varphi, a)\right\} \int_{C_{a, b}[0, T]} F(x) \exp \{\langle\varphi, x\rangle\} d \mu(x) .
\end{aligned}
$$

Proof. Let $G(x)=F(x) \exp \left\{\int_{0}^{T} \varphi(s) d x(s)\right\}$. Then, proceeding as in the proof of Theorem 3.4, we have the desired result.

References

[1] R.H. Cameron and W.T. Martin, Translations of Wiener integrals under translations, Annals of Math. 45(2), 386-396.
[2] R.H. Cameron and R.E. Graves, Additive functionals on a space of continuous functions I, Trans. Amer. Math. Soc. 70, 160-176.
[3] S.J. Chang and D.M. Chung, Conditional function space integrals with applications, Rocky Mountain J. Math. 26. 1, 37-62.
[4] S.J. Chang, C. Park and D. Skoug, Translation theorems for Fourier-Feynman transforms and conditional Fourier-Feynman transforms, Rocky Mountain J. of Math. 30(2), 477-496.
[5] G.W. Johnson and D. Skoug, Notes on the Feynman integral I, Pacific J. Math. 93, 313-324.
[6] _ , Notes on the Feynman integral II, J. Func. Anal. 41, 277-289.
[7] , Notes on the Feynman integral III : The Schrödinger equation, Pacific J. Math. 105, 321-358.
[8] J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.

Department of Mathematics
Dankook University
Cheonan 330-714, Korea
E-mail: jgchoi@dankook.ac.kr
Department of Mathematics
Dankook University
Cheonan 330-714, Korea
E-mail: yseo@dankook.ac.kr

