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TRANSLATION THEOREM ON FUNCTION SPACE

Jae Gil Choi and Young Seo Park

Abstract. In this paper, we use a generalized Brownian motion
process to define a translation theorem. First we establish the trans-
lation theorem for function space integrals. We then obtain the
general translation theorem for functionals on function space.

1. Introduction.

In [1], Cameron and Martin introduced the transformation of Wiener
integrals under the translation. In [4], Chang, Skoug and Park studied
translation theorems for Fourier-Feynman transforms and conditional
Fourier-Feynman transforms.

In this paper, we study a translation theorem for functionals on
function space but with x in a very general function space Ca,b[0, T ]
rather than in the Wiener space. The Wiener process used in [1,4] is
free of drift and is stationary in time while the stochastic processes
used in this paper is nonstationary in time and is subject to a drift
a(t).

In Section 2 of this paper, we give the basic concepts and nota-
tions. In Section 3, we study a translation theorem for function space
integrals. Finally, in Section 4, we establish the general translation
theorem for functionals on function space.

2. Definitions and preliminaries.

Let D = [0, T ] and let (Ω,B, P ) be a probability measure space. A
real valued stochastic process Y on (Ω,B, P ) and D is called a gen-
eralized Brownian motion process if Y (0, ω)=0 almost everywhere and
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for 0 = t0 < t1 < · · · < tn ≤ T , the n-dimensional random vector
(Y (t1, ω), · · · , Y (tn, ω)) is normally distributed with density function

(2.1)

K(~t, ~η) =
(
(2π)n

n∏

j=1

(b(tj)− b(tj−1))
)−1/2

· exp
{
−1

2

n∑

j=1

((ηj − a(tj))− (ηj−1 − a(tj−1)))2

b(tj)− b(tj−1)

}

where ~η = (η1, · · ·, ηn), η0 = 0, ~t = (t1, · · · , tn), a(t) is an absolutely
continuous real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ],
and b(t) is a strictly increasing, continuously differentiable real-valued
function with b(0) = 0 and b′(t) > 0 for each t ∈ [0, T ].

As explained in [8, p.18-20], Y induces a probability measure µ
on the measurable space (RD,BD) where RD is the space of all real
valued functions x(t), t ∈ D, and BD is the smallest σ-algebra of sub-
sets of RD with respect to which all the coordinate evaluation maps
et(x) = x(t) defined on RD are measurable. The triple (RD,BD, µ) is
a probability measure space. This measure space is called the function
space induced by the generalized Brownian motion process Y deter-
mined by a(·) and b(·).

We note that the generalized Brownian motion process Y deter-
mined by a(·) and b(·) is a Gaussian process with mean function a(t)
and covariance function r(s, t) = min{b(s), b(t)}. By Theorem 14.2 [8,
p.187], the probability measure µ induced by Y , taking a separable
version, is supported by Ca,b[0, T ] (which is equivalent to the Banach
space of continuous functions x on [0, T ] with x(0) = 0 under the sup
norm). Hence (Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space induced
by Y where B(Ca,b[0, T ]) is the Borel σ-algebra of Ca,b[0, T ].

Let L2
a,b[0, T ] be the Hilbert space of functions on [0, T ] which

are Lebesgue measurable and square integrable with respect to the
Lebesgue Stieltjes measures on [0, T ] induced by a(·) and b(·): i.e.,
(2.2)

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) < ∞ and
∫ T

0

v2(s)d|a|(s) < ∞
}

where |a|(t) denotes the total variation of the function a on the interval
[0, t].
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For convenience, let BV [0, T ] be the space of bounded variation
functions on [0, T ]. We denote the function space integral of a
B(Ca,b[0, T ])-measurable functional F by

∫

Ca,b[0,T ]

F (x)dµ(x)

whenever the integral exists.

3. Translation theorem for function space integrals.

Let (Ca,b[0, T ], B(Ca,b[0, T ]), µ) be the function space induced by
the generalized Brownian motion process defined in Section 1. In this
section we will obtain a translation theorem for function space integrals
over (Ca,b[0, T ],B(Ca,b[0, T ]), µ).

For a partition τ = {t1, · · · , tn} of [0, T ] with 0 = t0 < t1 <
· · · < tn = T , define a function Xτ : Ca,b[0, T ] −→ Rn by
Xτ (x) = (x(t1), · · · , x(tn)). For x ∈ Ca,b[0, T ], define the function
[Xτ (x)] ≡ [x]n : [0, T ] −→ R by

(3.1) [x]n(t) = x(tj−1) +
b(t)− b(tj−1)
b(tj)− b(tj−1)

(x(tj)− x(tj−1))

for each t ∈ [tj−1, tj ], j = 1, 2, · · · , n. In case, [x]n is called the polyg-
onalized form of x. Similarly, for ~ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn, define the
function [~ξ]n : [0, T ] −→ R by

(3.2) [~ξ]n(t) = ξj−1 +
b(t)− b(tj−1)
b(tj)− b(tj−1)

(ξj − ξj−1)

for each t ∈ [tj−1, tj ], j = 1, 2, · · · , n, and ξ0 = 0.
For any positive integer n, define the point tj by

tj =
T

n
j

where j = 1, 2, · · · , n.
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Lemma 3.1. Let [x]n be the polygonalized form of x as in (3.1) and
let F be a bounded and continuous functional on Ca,b[0, T ]. Then

(3.3) lim
n→∞

∫

Ca,b[0,T ]

F ([x]n)dµ(x) =
∫

Ca,b[0,T ]

F (x)dµ(x).

Proof. Let ε > 0 be given. For any x ∈ Ca,b[0, T ], there exists an
integer n0 = n0(ε) such that for all |t′ − t′′| ≤ 1/n0, we have

(3.4) |x(t′)− x(t′′)| < ε

2
.

By using (3.1) and (3.4), we have for each n ≥ n0 and tj−1 ≤ t ≤ tj ,
(3.5)

|x(t)− [x]n(t)| =
∣∣∣∣x(t)− x(tj−1)− b(t)− b(tj−1)

b(tj)− b(tj−1)
(x(tj)− x(tj−1))

∣∣∣∣

≤ |x(t)− x(tj−1)|+
∣∣∣∣
b(tj)− b(tj−1)
b(tj)− b(tj−1)

∣∣∣∣|x(tj)− x(tj−1)|

≤ ε

2
+

ε

2
= ε.

Hence

(3.6) lim
n→∞

[x]n(t) = x(t)

uniformly on [0, T ]. Since F is continuous on Ca,b[0, T ],

(3.7) lim
n→∞

F ([x]n) = F (x).

Let Fn(x) = F ([x]n). Then for all n ∈ N, |Fn| = |F |. So, by using the
Bounded Convergence Theorem, we have the desired result. ¤

Lemma 3.2. Let ϕ(t) be of bounded variation function on [0, T ] and

let x0(t) =
∫ t

0
ϕ(s)db(s). Then x0 ∈ Ca,b[0, T ] and we have

(3.8) lim
n→∞

n∑

j=1

(x0(tj)− x0(tj−1))2

b(tj)− b(tj−1)
=

∫ T

0

ϕ2(s)db(s)
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and
(3.9)

lim
n→∞

n∑

j=1

((x(tj)− a(tj))− (x(tj−1)− a(tj−1)))(x0(tj)− x0(tj−1))
b(tj)− b(tj−1)

=
∫ T

0

ϕ(s)dx(s)−
∫ T

0

ϕ(s)da(s).

Proof. Since ϕ ∈ BV [0, T ], x0(t) =
∫ t

0
ϕ(s)db(s) is absolutely con-

tinuous on [0, T ]. Observe that

n∑

j=1

(x0(tj)− x0(tj−1))2

b(tj)− b(tj−1)

=
n∑

j=1

(
x0(tj)− x0(tj−1)
b(tj)− b(tj−1)

)2

(b(tj)− b(tj−1))

By using the Cauchy’s Mean Value Theorem in the above equation, we
have

(3.10)
n∑

j=1

(x0(tj)− x0(tj−1))2

b(tj)− b(tj−1)
=

n∑

j=1

ϕ2(ξj)(b(tj)− b(tj−1))

where ξj ∈ [tj−1, tj ] for each j = 1, 2, · · · , n. Similarly, we have

(3.11)

n∑

j=1

((x(tj)− a(tj))− (x(tj−1)− a(tj−1)))(x0(tj)− x0(tj−1))
b(tj)− b(tj−1)

=
n∑

j=1

(
x0(tj)− x0(tj−1)
b(tj)− b(tj−1)

)
(x(tj)− x(tj−1))

−
n∑

j=1

(
x0(tj)− x0(tj−1)
b(tj)− b(tj−1)

)
(a(tj)− a(tj−1))

=
n∑

j=1

ϕ(ξj)(x(tj)− x(tj−1))−
n∑

j=1

ϕ(ξj)(a(tj)− a(tj−1)).
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Hence equations (3.10) and (3.11) converge to the followings
∫ T

0

ϕ2(s)db(s) and
∫ T

0

ϕ(s)dx(s)−
∫ T

0

ϕ(s)da(s)

as n →∞, respectively. Thus we have the desired results. ¤

Theorem 3.3. Let ϕ and x0 be given as in Lemma 3.2 and let F be
a B(Ca,b[0, T ])-measurable functional. Then F (x+x0) is B(Ca,b[0, T ])-
measurable and

(3.12)
∫

Ca,b[0,T ]

F (y)dµ(y) =
∫

Ca,b[0,T ]

F (x + x0)J(x, x0)dµ(x)

where
(3.13)

J(x, x0) = exp
{
−1

2

∫ T

0

ϕ2(s)db(s) +
∫ T

0

ϕ(s)da(s)−
∫ T

0

ϕ(s)dx(s)
}

.

Proof. It suffices to show the case in which the functional F is
bounded on Ca,b[0, T ]. Let us first consider the case F is bounded,
continuous, and F (y) = 0 for any y ∈ {x ∈ Ca,b[0, T ] : ‖x‖ > M}
where M > 0. Then F (x + x0) is measurable and there exists a posi-
tive real number K such that |F (x)| ≤ K for all x ∈ Ca,b[0, T ].

Let τ : 0 = t0 < t1 < · · · < tn = T be a partition of [0, T ]. Define
a function G on Rn by G(~ξ) = F ([~ξ]n) for each ~ξ ∈ Rn. Then G is
bounded and continuous. Hence we see that

(3.14) F ([y]n) = G(y(t1), · · · , y(tn)).

By using (3.14) and the Change of Variables Theorem, we have
(3.15)∫

Ca,b[0,T ]

F ([y]n)dµ(y)

=
∫

Ca,b[0,T ]

G(y(t1), · · · , y(tn))dµ(y)

=
∫

Rn

(
(2π)n

n∏

j=1

(b(tj)− b(tj−1))
)−1/2

G(v1, · · · , vn)

· exp
{
−1

2

n∑

j=1

((vj − a(tj))− (vj−1 − a(tj−1)))2

b(tj)− b(tj−1)

}
d~v.
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Let βj = x0(tj) and uj = vj − βj . Then we see that

(3.16)
F ([x + x0]n) = G(x(t1) + x0(t1), · · · , x(tn) + x0(tn))

= G(x(t1) + β1, · · · , x(tn) + βn))

and

(3.17)

((vj − a(tj))− (vj−1 − a(tj−1)))2

= ((uj − a(tj))− (uj−1 − a(tj−1)))2 + (βj − βj−1)2

+ 2(βj − βj−1)((uj − a(tj))− (uj−1 − a(tj−1))).

By applying (3.16) and (3.17) above to the last equation of (3.15), we
have

(3.18)

∫

Ca,b[0,T ]

F ([y]n)dµ(y)

= exp
{
−1

2

n∑

j=1

(x0(tj)− x0(tj−1))2

b(tj)− b(tj−1)

} ∫

Ca,b[0,T ]

F ([x + x0]n)

· exp
{
−

n∑

j=1

((x(tj)− a(tj))− (x(tj−1)− a(tj−1)))
b(tj)− b(tj−1)

· (x0(tj)− x0(tj−1))
}

dµ(x).

Assume that x + x0 6∈ {x ∈ Ca,b[0, T ] : ‖y‖ > M}. Then we see that

‖[x + x0]n‖ ≤ ‖x + x0‖ ≤ M

and so we have

(3.19) |x(tj)| ≤ |x0(tj)|+ |x(tj) + x0(tj)| ≤ ‖x0‖+ M
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for any x ∈ Ca,b[0, T ]. By using (3.11) and (3.19), we obtain that
∣∣∣∣

n∑

j=1

((x(tj)− a(tj))− (x(tj−1)− a(tj−1)))(x0(tj)− x0(tj−1))
b(tj)− b(tj−1)

∣∣∣∣

=
∣∣∣∣

n∑

j=1

ϕ(ξj)(x(tj)− x(tj−1))−
n∑

j=1

ϕ(ξj)(a(tj)− a(tj−1))
∣∣∣∣

≤
∣∣∣∣

n∑

j=1

ϕ(ξj)(x(tj)− x(tj−1))
∣∣∣∣ +

∣∣∣∣
n∑

j=1

ϕ(ξj)(a(tj)− a(tj−1))
∣∣∣∣

=
∣∣∣∣ϕ(ξn)x(tn)−

n∑

j=1

(ϕ(ξj)− ϕ(ξj−1))x(tj−1)
∣∣∣∣

+
∣∣∣∣ϕ(ξn)a(tn)−

n∑

j=1

(ϕ(ξj)− ϕ(ξj−1))a(tj−1)
∣∣∣∣

≤ |ϕ(ξn)||x(tn)|+
n∑

j=1

|ϕ(ξj)− ϕ(ξj−1)||x(tj−1)|

+ |ϕ(ξn)||a(tn)|+
n∑

j=1

|ϕ(ξj)− ϕ(ξj−1)||a(tj−1)|

≤ (‖x0‖+ M + ‖a‖)|(‖ϕ‖+ V T
0 (ϕ))

where V T
0 (ϕ) is the total variation of ϕ on [0, T ]. So the integrand of

(3.18) is bounded by the following

K exp{(‖x0‖+ M + ‖a‖)(‖ϕ‖+ V T
0 (ϕ))}.

Thus, by using the Bounded Convergence Theorem, (3.8), and (3.9),
the expression (3.17) converges to

exp
{
−1

2

∫ T

0

ϕ2(s)db(s)
}

·
∫

Ca,b[0,T ]

F (x + x0) exp
{
−

∫ T

0

ϕ(s)dx(s) +
∫ T

0

ϕ(s)da(s)
}

dµ(x).

Hence by using Lemma 2.1, we obtain the equation (3.12) above.
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Now, let F be a nonnegative, bounded and continuous functional on
Ca,b[0, T ]. For each n ∈ N, define the function Mn by

Mn(u) =





1 (0 ≤ u ≤ n)
n + 1− u (n ≤ u ≤ n + 1)
0 (n + 1 ≤ u).

Then Mn is a continuous real valued function. Let Fn(x) =
F (x)Mn(‖x‖). Then Fn satisfies the hypothesis of the first case. So
proceeding as in the proof above, we obtain

∫

Ca,b[0,T ]

Fn(y)dµ(y) = exp
{
−1

2

∫ T

0

ϕ2(s)db(s) +
∫ T

0

ϕ(s)da(s)
}

·
∫

Ca,b[0,T ]

Fn(x + x0) exp
{
−

∫ T

0

ϕ(s)dx(s)
}

dµ(x).

Since {Fn} is a monotone increasing sequence of functionals, Fn → F
as n → ∞. Hence by using the Monotone Convergence Theorem, we
have the desired result. ¤

Theorem 3.4. Let ϕ, x0, and F be given as in Theorem 3.3. Then

∫

Ca,b[0,T ]

F (x + x0)dµ(x) = exp
{
−1

2

∫ T

0

ϕ2(s)db(s)−
∫ T

0

ϕ(s)da(s)
}

·
∫

Ca,b[0,T ]

F (x) exp
{∫ T

0

ϕ(s)dx(s)
}

dµ(x).

Proof. Let G(x) = F (x) exp{∫ T

0
ϕ(s)dx(s)}. Then by using equa-
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tion (2.12), we have

∫

Ca,b[0,T ]

F (x) exp
{∫ T

0

ϕ(s)dx(s)
}

dµ(x)

=
∫

Ca,b[0,T ]

G(x)dµ(x)

=
∫

Ca,b[0,T ]

G(x + x0)J(x, x0)dµ(x)

=
∫

Ca,b[0,T ]

F (x + x0) exp
{∫ T

0

ϕ(s)d(x(s) + x0(s))
}

· exp
{
−1

2

∫ T

0

ϕ2(s)db(s) +
∫ T

0

ϕ(s)da(s)−
∫ T

0

ϕ(s)dx(s)
}

dµ(x)

= exp
{

1
2

∫ T

0

ϕ2(s)db(s) +
∫ T

0

ϕ(s)da(s)
} ∫

Ca,b[0,T ]

F (x + x0)dµ(x).

Hence we have the desired result. ¤

4. The general translation theorem

In this section we consider the general translation theorem for func-
tionals on Ca,b[0, T ].

For u, v ∈ L2
a,b[0, T ], let

(u, v)a,b =
∫ T

0

u(t)v(t)d[b(t) + |a|(t)].

Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and ‖u‖a,b =

√
(u, u)a,b

is a norm on L2
a,b[0, T ]. In particular note that ‖u‖a,b = 0 if and only

if u(t) = 0 a.e. on [0, T ]. Furthermore (L2
a,b[0, T ], ‖ · ‖a,b) is a separable

Hilbert space.
Let {ej}∞j=1 be a complete orthogonal set of real-valued functions of

bounded variation on [0, T ] such that

(ej , ek)a,b =
{

0 , j 6= k

1 , j = k
,
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and for each v ∈ L2
a,b[0, T ], let

vn(t) =
n∑

j=1

(v, ej)a,bej(t)

for n = 1, 2, · · · . Then for each v ∈ L2
a,b[0, T ], the Paley-Wiener-

Zygmund(PWZ) stochastic integral 〈v, x〉 is defined by the formula

〈v, x〉 = lim
n→∞

∫ T

0

vn(t)dx(t)

for all x ∈ Ca,b[0, T ] for which the limit exists.

Remark 4.1. Following are some facts about the PWZ stochastic
integral
(i) For each v ∈ L2

a,b[0, T ], the PWZ integral 〈v, x〉 exists for µ-a.e.
x ∈ Ca,b[0, T ].
(ii) The PWZ integral 〈v, x〉 is essentially independent of the complete

orthonormal set {ej}∞j=1.
(iii) If v ∈ BV [0, T ], then PWZ integral 〈v, x〉 equals the Riemann

-Stieltjes integral
∫ T

0
v(s)dx(s) for s-a.e. x ∈ Ca,b[0, T ].

(iv) The PWZ integral has the expected linearity properties.

Lemma 4.1. Let ϕn ∈ Ca,b[0, T ] ∩ BV [0, T ] for each n ∈ N and
let ϕn converge in the space L2

a,b[0, T ] as n → ∞. Then for any real

number λ, exp{λ ∫ T

0
ϕn(t)dx(t)} converges in the space L2(Ca,b[0, T ])

as n →∞.

Proof. The proof given in [3] with the current hypotheses on a(t)
and b(t) also works here. ¤

Now, we obtain the general translation theorem of a functional on
Ca,b[0, T ].

Theorem 4.2. Let ϕ(t) ∈ L2
a,b[0, T ] and let x0(t) =

∫ t

0
ϕ(s)db(s). If

F be a B(Ca,b[0, T ])-measurable functional on Ca,b[0, T ], then F (x+x0)
is B(Ca,b[0, T ])-measurable and

(4.1)

∫

Ca,b[0,T ]

F (y)dµ(y) = exp
{
− 1

2
(ϕ2, b′) + (ϕ, a′)

}

·
∫

Ca,b[0,T ]

F (x + x0) exp{−〈ϕ, x〉}dµ(x)
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where

(ϕ2, b′) =
∫ T

0

ϕ2(t)b′(t)dt =
∫ T

0

ϕ(t)db(t)

and

(ϕ, a′) =
∫ T

0

ϕ(t)a′(t)dt =
∫ T

0

ϕ(t)da(t).

Proof. It suffices to show the case in which the functional F is
bounded and continuous on Ca,b[0, T ]. Let {ej}∞j=1 be complete or-
thonormal set in L2

a,b[0, T ] with ej ∈ Ca,b[0, T ] ∩ BV [0, T ] for each
j ∈ N. For each n ∈ N, let

(4.2) ϕn(t) =
n∑

j=1

(ϕ, ej)a,bej(t).

Then ϕn ∈ Ca,b[0, T ] ∩BV [0, T ] and

(4.3) ‖ϕn − ϕ‖a,b −→ 0

as n →∞. For each n ∈ N, define

(4.4) x0,n(t) =
∫ t

0

ϕn(s)db(s).

Then, by using equation (3.12), we see that

∫

Ca,b[0,T ]

F (y)dµ(y)

(4.5)

= exp
{
−1

2

∫ T

0

ϕ2
n(s)db(s) +

∫ T

0

ϕn(s)da(s)
}

·
∫

Ca,b[0,T ]

F (x + x0,n) exp
{
−

∫ T

0

ϕn(s)dx(s)
}

dµ(x).
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By using Cauchy-Schwarz inequality, we have

(4.6)

|x0(t)− x0,n(t)| =
∣∣∣∣
∫ t

0

(ϕ(s)− ϕn(s))db(s)
∣∣∣∣

≤
∫ T

0

∣∣(ϕ(s)− ϕn(s))χ[0,t](s)
∣∣d[b(s) + |a|(s)]

≤ ‖ϕ− ϕn‖a,b

√
b(t) + |a|(t)

≤ ‖ϕ− ϕn‖a,b

√
b(T ) + |a|(T ).

Hence by using (4.6) and (4.3), we obtain that

(4.7) ‖x0 − x0,n‖ −→ 0.

Thus for all x ∈ Ca,b[0, T ]

(4.8) F (x + x0,n) −→ F (x + x0).

Since F is bounded, by applying the Bounded Convergence Theorem,
we have

(4.9)
∫

Ca,b[0,T ]

|F (x + x0,n)− F (x + x0)|2dµ(x) −→ 0.

Note that ∫ T

0

ϕn(t)dx(t) −→ 〈ϕ, x〉 µ− a.e.x ∈ Ca,b[0, T ].

So by using (4.3) and Lemma 4.1 with λ = −1

exp
{
−

∫ T

0

ϕn(t)dx(t)
}
−→ exp{−〈ϕ, x〉}

in the space L2(Ca,b[0, T ]). Further, by equation (4.9) above, we obtain

∫

Ca,b[0,T ]

F (x + x0,n) exp
{
−

∫ T

0

ϕn(t)dx(t)
}

dµ(x)

(4.10)

−→
∫

Ca,b[0,T ]

F (x + x0) exp{−〈ϕ, x〉}dµ(x).

Hence by using equations (4.5) and (4.10) we have the desired equation
(4.1). ¤

We next use Theorem 4.2 to evaluate a translation theorem of func-
tionals on Ca,b[0, T ].
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Theorem 4.3. Let ϕ, x0, and F be given as in Theorem 4.2. Then

∫

Ca,b[0,T ]

F (x + x0)dµ(x)

= exp
{
−1

2
(ϕ2, b′)− (ϕ, a)

} ∫

Ca,b[0,T ]

F (x) exp{〈ϕ, x〉}dµ(x).

Proof. Let G(x) = F (x) exp{∫ T

0
ϕ(s)dx(s)}. Then, proceeding as

in the proof of Theorem 3.4, we have the desired result. ¤
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