Acknowledgement
The authors would like to express their gratitude to the editor and the referees for their valuable comments and suggestions which have improved the original paper.
References
- J. C. Baez, I. E. Segal, and Z.-F. Zhou, Introduction to Algebraic and Constructive Quantum Field Theory, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1992. https://doi.org/10.1515/9781400862504
- R. H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math. Soc. 2 (1951), 914-924. https://doi.org/10.2307/2031708
- R. H. Cameron and R. E. Graves, Additive functionals on a space of continuous functions. I, Trans. Amer. Math. Soc. 70 (1951), 160-176. https://doi.org/10.2307/1990530
- R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under translations, Ann. of Math. (2) 45 (1944), 386-396. https://doi.org/10.2307/1969276
- R. H. Cameron and D. A. Storvick, Feynman integral of variations of functionals, in Gaussian random fields (Nagoya, 1990), 144-157, Ser. Probab. Statist., 1, World Sci. Publ., River Edge, NJ, 1991.
- D. M. Chung, Scale-invariant measurability in abstract Wiener spaces, Pacific J. Math. 130 (1987), no. 1, 27-40. http://projecteuclid.org/euclid.pjm/1102690291 102690291
- G. B. Folland, Real Analysis, second edition, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999.
- L. Gross, Abstract Wiener spaces, in Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, 31-42, Univ. California Press, Berkeley, CA, 1967.
- N. Hayek, B. J. Gonzalez, and E. R. Negrin, The second quantization and its general integral finite-dimensional representation, Integral Transforms Spec. Funct. 13 (2002), no. 4, 373-378. https://doi.org/10.1080/10652460213525
- N. Hayek, H. M. Srivastava, B. J. Gonzalez, and E. R. Negrin, A family of Wiener transforms associated with a pair of operators on Hilbert space, Integral Transforms Spec. Funct. 24 (2013), no. 1, 1-8. https://doi.org/10.1080/10652469.2011.648379
- S. Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, 129, Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9780511526169
- G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, in Stochastic analysis and applications, 217-267, Adv. Probab. Related Topics, 7, Dekker, New York, 1984.
- G. Kallianpur, D. Kannan, and R. L. Karandikar, Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces, and a Cameron-Martin formula, Ann. Inst. H. Poincare Probab. Statist. 21 (1985), no. 4, 323-361.
- J. Kuelbs, Abstract Wiener spaces and applications to analysis, Pacific J. Math. 31 (1969), 433-450. http://projecteuclid.org/euclid.pjm/1102977879 102977879
- H.-H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, Vol. 463, Springer-Verlag, Berlin, 1975.
- H.-H. Kuo and Y.-J. Lee, Integration by parts formula and the Stein lemma on abstract Wiener space, Commun. Stoch. Anal. 5 (2011), no. 2, 405-418. https://doi.org/10.31390/cosa.5.2.10
- Y. J. Lee, Applications of the Fourier-Wiener transform to differential equations on infinite-dimensional spaces. I, Trans. Amer. Math. Soc. 262 (1980), no. 1, 259-283. https://doi.org/10.2307/1999982
- Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), no. 2, 153-164. https://doi.org/10.1016/0022-1236(82)90103-3
- U. G. Lee and J. G. Choi, An extension of the Cameron-Martin translation theorem via Fourier-Hermite functionals, Arch. Math. (Basel) 115 (2020), no. 6, 679-689. https://doi.org/10.1007/s00013-020-01524-6
- E. R. Negrin, Integral representation of the second quantization via the Segal duality transform, J. Funct. Anal. 141 (1996), no. 1, 37-44. https://doi.org/10.1006/jfan.1996.0120
- R. E. A. C. Paley, N. Wiener, and A. Zygmund, Notes on random functions, Math. Z. 37 (1933), no. 1, 647-668. https://doi.org/10.1007/BF01474606
- C. Park and D. Skoug, A note on Paley-Wiener-Zygmund stochastic integrals, Proc. Amer. Math. Soc. 103 (1988), no. 2, 591-601. https://doi.org/10.2307/2047184
- C. Park, D. Skoug, and D. Storvick, Relationships among the first variation, the convolution product and the Fourier-Feynman transform, Rocky Mountain J. Math. 28 (1998), no. 4, 1447-1468. https://doi.org/10.1216/rmjm/1181071725
- C. Park, D. Skoug, and D. Storvick, Fourier-Feynman transforms and the first variation, Rend. Circ. Mat. Palermo (2) 47 (1998), no. 2, 277-292. https://doi.org/10.1007/BF02844368
- I. E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. 81 (1956), 106-134. https://doi.org/10.2307/1992855
- I. Shigekawa, Derivatives of Wiener functionals and absolute continuity of induced measures, J. Math. Kyoto Univ. 20 (1980), no. 2, 263-289. https://doi.org/10.1215/kjm/ 1250522278