DOI QR코드

DOI QR Code

ON THE GEOMETRY OF COMPLEX METALLIC NORDEN MANIFOLDS

  • Received : 2021.03.08
  • Accepted : 2021.12.13
  • Published : 2022.09.30

Abstract

We study almost complex metallic Norden manifolds and their adapted connections with respect to an almost complex metallic Norden structure. We study various connections like special connection of the first type, special connection of the second type, Kobayashi-Nomizu metallic Norden type connection, Yano metallic Norden type connection etc., on almost complex metallic Norden manifolds. We establish classifications of almost complex metallic Norden manifolds by using covariant derivative of the almost complex metallic Norden structure and also by using torsion tensor on the canonical connections.

Keywords

References

  1. A. M. Blaga and A. Nannicini, On curvature tensors of Norden and metallic pseudoRiemannian manifolds, Complex Manifolds 6 (2019), no. 1, 150-159. https://doi.org/10.1515/coma-2019-0008
  2. A. M. Blaga and A. Nannicini, On the geometry of metallic pseudo-Riemannian structures, Riv. Math. Univ. Parma (N.S.) 11 (2020), no. 1, 69-87.
  3. M. Crasmareanu and C.-E. Hretcanu, Golden differential geometry, Chaos Solitons Fractals 38 (2008), no. 5, 1229-1238. https://doi.org/10.1016/j.chaos.2008.04.007
  4. F. Etayo, A. deFrancisco, and R. Santamaria, Classification of almost Norden golden manifolds, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 6, 3941-3961. https://doi.org/10.1007/s40840-020-00905-y
  5. F. Etayo and R. Santamaria, Distinguished connections on (J2 = ±1)-metric manifolds, Arch. Math. (Brno) 52 (2016), no. 3, 159-203. https://doi.org/10.5817/AM2016-3-159
  6. F. Etayo and R. Santamaria, The well adapted connection of a (J2 = ±1)-metric manifold, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 111 (2017), no. 2, 355-375. https://doi.org/10.1007/s13398-016-0299-x
  7. G. Ganchev and A. Borisov, Note on the almost complex manifolds with a Norden metric, C. R. Acad. Bulgare Sci. 39 (1986), no. 5, 31-34.
  8. G. Ganchev, K. Gribachev, and V. Mihova, B-connections and their conformal invariants on conformally Kaehler manifolds with B-metric, Publ. Inst. Math. (Beograd) (N.S.) 42(56) (1987), 107-121.
  9. G. Ganchev and V. Mihova, Canonical connection and the canonical conformal group on an almost complex manifold with B-metric, Ann. Univ. Sofia Fac. Math. Inform. 81 (1987), no. 1, 195-206 (1994).
  10. A. Gezer, N. Cengiz, and A. Salimov, On integrability of golden Riemannian structures, Turkish J. Math. 37 (2013), no. 4, 693-703. https://doi.org/10.3906/mat-1108-35
  11. S. I. Goldberg and K. Yano, Polynomial structures on manifolds, Kodai Math. Sem. Rep. 22 (1970), 199-218. http://projecteuclid.org/euclid.kmj/1138846118 https://doi.org/10.2996/kmj/1138846118
  12. C.-E. Hretcanu and M. Crasmareanu, Metallic structures on Riemannian manifolds, Rev. Un. Mat. Argentina 54 (2013), no. 2, 15-27.
  13. M. Iscan and A. A. Salimov, On Kahler-Norden manifolds, Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 1, 71-80. http://dx.doi.org/10.1007/s12044-009-0008-1
  14. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1963.
  15. R. Kumar, G. Gupta, and R. Rani, Adapted connections on Kaehler-Norden Golden manifolds and harmonicity, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 2, 2050027, 17 pp. https://doi.org/10.1142/S0219887820500279
  16. A. Salimov, On anti-Hermitian metric connections, C. R. Math. Acad. Sci. Paris 352 (2014), no. 9, 731-735. https://doi.org/10.1016/j.crma.2014.07.004
  17. A. Salimov and S. Turanli, Curvature properties of anti-Kahler-Codazzi manifolds, C. R. Math. Acad. Sci. Paris 351 (2013), no. 5-6, 225-227. https://doi.org/10.1016/j.crma.2013.03.008
  18. V. W. de Spinadel, The metallic means family and multifractal spectra, Nonlinear Anal. 36 (1999), no. 6, Ser. B: Real World Appl., 721-745. https://doi.org/10.1016/S0362-546X(98)00123-0
  19. S. Turanli, A. Gezer, and H. Cakicioglu, Metallic Kahler and nearly metallic Kahler manifolds, Int. J. Geom. Methods Mod. Phys. 18 (2021), no. 9, Paper No. 2150146, 20 pp. https://doi.org/10.1142/S0219887821501462