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ON THE GEOMETRY OF COMPLEX METALLIC

NORDEN MANIFOLDS

Adara Monica Blaga, Rakesh Kumar, and Rachna Rani

Abstract. We study almost complex metallic Norden manifolds and

their adapted connections with respect to an almost complex metallic
Norden structure. We study various connections like special connection

of the first type, special connection of the second type, Kobayashi-Nomizu
metallic Norden type connection, Yano metallic Norden type connection

etc., on almost complex metallic Norden manifolds. We establish classifi-

cations of almost complex metallic Norden manifolds by using covariant
derivative of the almost complex metallic Norden structure and also by

using torsion tensor on the canonical connections.

1. Introduction

Through an adapted connection (which parallelizes an almost Norden struc-
ture (J, g)) on an almost Norden manifold (M,J, g), there exist first canoni-
cal connection, Kobayashi-Nomizu connection, Yano connection etc. All these
connections are uniquely defined by means of the Levi-Civita connection of the
metric g (for details, see [5]). On the other hand, connections such as Chern
connections, canonical (well adapted) connections and connections with totally
skew-symmetric torsion tensor (for instance, the Bismut connections), are de-
fined by imposing an additional condition on the torsion, in order to become
adapted connections. But a special role, through all the adapted connections,
is played by the canonical connection. It measures the integrability of the asso-
ciated G-structure, that is, the associated G-structure is integrable if and only
if the torsion and the curvature tensor field of the canonical connection vanish.
In the Kähler case, the canonical connection coincides with the Levi-Civita
connection.

Moreover, Ganchev and Borisov [7] established a classification of the almost
complex manifolds with a Norden metric with respect to the covariant deriv-
ative of the almost complex structure. Later, Ganchev and Mihova [9] also

Received March 8, 2021; Accepted December 13, 2021.

2020 Mathematics Subject Classification. Primary 53C15, 53C05.
Key words and phrases. Almost complex metallic Norden manifold, Kobayashi-Nomizu

metallic Norden type connection, Yano metallic Norden type connection, adapted connection,
classification.

c©2022 Korean Mathematical Society

1069



1070 A. M. BLAGA, R. KUMAR, AND R. RANI

provided a characterization of the eight classes of almost Norden manifolds by
means of conditions on the torsion tensor of the canonical connection and its
associated 1-form.

Motivated from above mentioned studies and from the duality between
the almost complex metallic Norden and almost Norden structures, we study
adapted connections with respect to an almost complex metallic Norden struc-
ture and explore special connection of the first type, special connection of the
second type, Kobayashi-Nomizu metallic Norden type connection, Yano metallic
Norden type connection etc., on the almost complex metallic Norden manifolds.
We also provide classifications of almost complex metallic Norden manifolds by
using covariant derivative of the almost complex metallic Norden structure and
also by using torsion tensor on the canonical connections.

2. Almost complex metallic Norden manifolds

On a smooth manifold M , Goldberg and Yano [11] defined a polynomial
structure of degree d, which is a (1, 1)-tensor field f of constant rank such
that d is the smallest integer for which fd, fd−1, . . . , f, I are not independent,
where I is the identity tensor field of type (1, 1). Then there exist real numbers
γ1, γ2, . . . , γd such that fd + γdf

d−1 + · · · + γ2f + γ1I = 0. For example, if a
polynomial structure f satisfies

• f2 + I = 0, then f is an almost complex structure;
• f2 − I = 0, then f is an almost product structure;
• f2 − pf − qI = 0, where p, q are positive integers, then f is a metallic

structure [12, 18];
• f2 − f − I = 0, then f is a golden structure [3];
• f2 − f + 3

2I = 0, then f is an almost complex golden structure [3, 19].

Definition. Let M2n be a 2n-dimensional smooth manifold. A tensor field
Ψ of (1, 1)-type on M2n satisfying Ψ2 − pΨ − qI = 0, where p and q are real
numbers with p2 + 4q < 0, is called an almost complex metallic structure and
(M2n,Ψ) is called an almost complex metallic manifold (see also [3, 19]).

For an almost complex metallic structure Ψ, q is always a negative real

number. The complex numbers σc
p,q =

p±
√

p2+4q

2 , which are the solutions of

the equation x2−px−q = 0, where p2 +4q < 0, are called the complex metallic
means. For different values of p and q, we have the following means:

• For p = 1 and q = − 3
2 , we obtain σc

p,q = 1±
√

5 i
2 , which are almost

complex golden means, where i =
√
−1.

• For p = 2 and q = −3, we obtain σc
p,q = 1 ±

√
2 i, which are almost

complex silver means.

• For p = 3 and q = − 11
2 , we obtain σc

p,q = 3±
√

13 i
2 , which are almost

complex bronze means.
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• For p = 4 and q = −9, we obtain σc
p,q = 2 ±

√
5 i, which are almost

complex subtle means.

• For p = 1 and q = − 7
2 , we obtain σc

p,q = 1±
√

13 i
2 , which are almost

complex nickel means.

Let J be an almost complex structure on M2n. Then

(1) ΨJ =
1

2

[
pI ±

(
(p− 2σc

p,q)i
)
J
]
,

are almost complex metallic structures on M2n and are called the almost com-
plex metallic structures induced by J . Conversely, if Ψ is an almost complex
metallic structure on M2n, then

(2) JΨ = ± 1

(p− 2σc
p,q)i

(2Ψ− pI)

are almost complex structures on M2n and are called the almost complex struc-
tures induced by Ψ. It is known that if J is an almost complex structure, then

J̃ = −J is also an almost complex structure and known as the conjugate al-
most complex structure of J . If Ψ is an almost complex metallic structure,

then Ψ̃ = pI − Ψ is also an almost complex metallic structure and known
as the conjugate almost complex metallic structure of Ψ. Further, the conju-

gate almost complex structure J̃ and the conjugate almost complex metallic

structure Ψ̃ also satisfy the relations analogous to (1) and (2), respectively.

Hence, an almost complex structure J (respectively, J̃) defines a J (respec-

tively, J̃)–associated almost complex metallic structure ΨJ (respectively, ΨJ̃)

and vice-versa. Furthermore ΨJΨ

= Ψ and JΨJ

= J , therefore, there is a one-
to-one correspondence between almost complex metallic structures and almost
complex structures on M2n.

Let ϕ and θ be tensor fields of the type (1, 1) and (0, s) on M , respectively.
Then θ is said to be a pure tensor field with respect to ϕ if

θ(ϕX1, X2, . . . , Xs) = θ(X1, ϕX2, . . . , Xs) = · · · = θ(X1, X2, . . . , ϕXs)

for any vector fields X1, X2, . . . , Xs on M . Consider the Tachibana operator

φϕ : T0
s(M)→ T0

s+1(M)

given by

(φϕθ)(X,Y1, Y2, . . . , Ys) = (ϕX)(θ(Y1, Y2, . . . , Ys))

−X(θ(ϕY1, Y2, . . . , Ys))

+ θ((LY1ϕ)X,Y2, . . . , Ys)

. . .

+ θ(Y1, Y2, . . . , (LYs
ϕ)X),(3)

where LY denotes the Lie differentiation with respect to Y .
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An indefinite almost complex manifold (M2n, J, g) is said to be an almost
Norden manifold if the pseudo-Riemannian metric g is pure with respect to J ,
that is, g(JX, Y ) = g(X, JY ) for any vector fields X,Y on M2n. Moreover, if
the almost complex structure J is integrable, then it is said to be a complex
structure and (M2n, J, g) is called a Norden manifold.

A tensor field θ on M is said to be holomorphic if

(φJθ)(X,Y1, Y2, . . . , Ys) = 0

for any vector fields X,Y1, . . . , Ys on M .
From [13], it is known that an almost complex Norden manifold is holomor-

phic Norden (∇J = 0) if and only if g is holomorphic (φJg = 0), where ∇ is
the Levi-Civita connection of g.

Definition. Let (M2n,Ψ) be an almost complex metallic manifold and let g be
a pseudo-Riemannian metric on M2n. If g is pure with respect to the almost
complex metallic structure Ψ, that is, g(ΨX,Y ) = g(X,ΨY ) for any vector
fields X,Y on M2n, then the triple (M2n,Ψ, g) is called an almost complex
metallic Norden manifold.

For an almost complex metallic Norden manifold, we derive

(4) g(ΨX,ΨY ) = pg(ΨX,Y ) + qg(X,Y ).

An almost complex metallic structure Ψ is integrable if and only if there
exists a torsion-free linear connection such that the almost complex metallic
structure Ψ is covariantly constant with respect to it. Moreover, the integra-
bility of the structure Ψ is equivalent to the vanishing of the Nijenhuis tensor
field NΨ of Ψ, where the NΨ is given by

(5) NΨ(X,Y ) = [ΨX,ΨY ]−Ψ[ΨX,Y ]−Ψ[X,ΨY ] + Ψ2[X,Y ],

which is equivalent to

(6) NΨ(X,Y ) = Ψ(∇Y Ψ)X −Ψ(∇XΨ)Y + (∇ΨXΨ)Y − (∇ΨY Ψ)X.

If the almost complex metallic structure Ψ is integrable, then Ψ is called a
complex metallic structure and (M2n,Ψ) is called a complex metallic manifold.
Since there is a one-to-one correspondence between almost complex metallic
structures and almost complex structures, the technique of φ-operator used for
almost complex structure can be used for almost complex metallic structure.
Hence, analogous to the proofs of the theorems available in [10, 13], we have
the following important assertions.

Theorem 2.1. Let (M2n,Ψ, g) be an almost complex metallic Norden mani-
fold. Then

(i) Ψ is integrable if φΨg = 0;
(ii) the condition φΨg = 0 is equivalent to ∇Ψ = 0, where ∇ is the Levi-

Civita connection of g.
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Moreover, if ΨJ is one of the two almost complex metallic structures induced
by the almost complex structure J , then from (1), we also have

(7) φΨJ g =
(p− 2σc

p,q)i

2
φJg.

Hence, from the assertion (i) of Theorem 2.1 and (7), it is obvious that the
almost complex metallic structure ΨJ is integrable if and only if the almost
complex structure J is integrable. Since

(φJg)(X,Y, Z) = −g((∇XJ)Y,Z) + g((∇Y J)X,Z) + g((∇ZJ)X,Y ),

it follows that φJg = 0, which is equivalent to ∇J = 0.

Theorem 2.2 ([13]). An almost Norden manifold of class Cω is a holomorphic
Norden manifold if and only if the almost complex structure is parallel with
respect to the Levi-Civita connection ∇.

Hence, we have the following observation immediately.

Theorem 2.3. An almost complex metallic Norden manifold (M2n,Ψ, g) is a
holomorphic metallic Norden manifold if and only if φJΨg = 0.

From [13], it is known that (M2n, J, g) is said to be a Kähler-Norden manifold
if∇J = 0, where∇ is the Levi-Civita connection of the Norden metric g. Hence
from Theorem 2.1 and (7), we can define a Kähler-Norden metallic manifold
as follows:

Definition. Let (M2n,Ψ, g) be an almost complex metallic Norden mani-
fold. If ∇Ψ = 0, where ∇ is the Levi-Civita connection of g, then the triplet
(M2n,Ψ, g) is called a Kähler-Norden metallic manifold.

Curvature properties of Kähler-Norden metallic manifolds can be found in
[1].

3. The twin metallic Norden metric

It is well known that an almost Hermitian structure (J, g) defines a funda-
mental 2-form Ω by Ω(X,Y ) = g(JX, Y ). But for an almost Norden mani-
fold (M2n, J, g), the pair (J, g) defines a twin Norden metric g̃ by g̃(X,Y ) =
(g◦J)(X,Y ) = g(JX, Y ), which is a symmetric (0, 2)-tensor field, not a 2-form.
Analogously, for an almost complex metallic Norden manifold, a twin metallic
Norden metric g̃ is defined as

(8) g̃(X,Y ) = (g ◦Ψ)(X,Y ) = g(ΨX,Y )

for any vector fields X,Y on M2n. It is obvious that the twin metallic Norden
metric is pure with respect to the almost complex metallic structure Ψ, that
is, g̃(ΨX,Y ) = g̃(X,ΨY ). It should be noted that both the metrics g and g̃
are necessarily of the same signature (n, n). Using (4), it follows that

(9) g̃(ΨX,Y ) = pg̃(X,Y ) + qg(X,Y ).
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Since the twin metallic Norden metric g̃ is pure with respect to Ψ, then for the

conjugate almost complex metallic structure Ψ̃ = pI −Ψ, we have

g̃(Ψ̃X,Y ) = pg̃(X,Y )− g̃(ΨX,Y ) = pg̃(X,Y )− g̃(X,ΨY ) = g̃(X, Ψ̃Y ),

this implies that the twin metallic Norden metric g̃ is also pure with respect to

the conjugate almost complex metallic structure Ψ̃. Moreover

g̃(Ψ̃X,Y ) = −qg(X,Y ) and g̃(Ψ̃X, Ψ̃Y ) = −qg(Ψ̃X,Y ).

Next, we apply a φΨ-operator on the twin metallic Norden metric g̃ and
using (3), we derive

(φΨg̃)(X,Y, Z) = (ΨX)(g̃(Y,Z))−X(g̃(ΨY, Z))

+ g̃((LY Ψ)X,Z) + g̃(Y, (LZΨ)X)

= (LΨX g̃ − LX(g̃ ◦Ψ))(Y,Z) + g̃(Y,Ψ(LXZ))− g̃(ΨY,LXZ)

= (φΨg)(X,ΨY, Z) + g(NΨ(X,Y ), Z),(10)

where NΨ is the Nijenhuis tensor field of Ψ. Hence, for a complex metallic
Norden manifold, the condition φΨg̃ = 0 is equivalent to φΨg = 0.

Let ∇ be the Levi-Civita connection of the Norden metric g. Then

∇g̃ = (∇g) ◦Ψ + g ◦ (∇Ψ) = g ◦ (∇Ψ).

Hence, we immediately observe the following result.

Theorem 3.1. If (M2n,Ψ, g) is a Kähler-Norden metallic manifold, then the
Levi-Civita connection of the Norden metric g coincides with the Levi-Civita of
the twin metric g̃.

Thus, (Ψ, g) is a Kähler-Norden metallic structure if and only if the twin
Norden metallic structure (Ψ, g̃) is a Kähler-Norden metallic structure. Let

the Levi-Civita connections of g and g̃ be denoted by ∇ and ∇̃, respectively.

Consider the tensor fields FΨ and F̃Ψ of type (0, 3) on M2n as

(11) FΨ(X,Y, Z) = g((∇XΨ)Y, Z), F̃Ψ(X,Y, Z) = g̃((∇̃XΨ)Y, Z)

for any vector fields X,Y, Z on M2n. If the tensor field FΨ vanishes identically,
then the triplet (M2n,Ψ, g) becomes a Kähler-Norden metallic manifold. These
tensor fields satisfy the following properties

(12) FΨ(X,Y, Z) = FΨ(X,Z, Y ), F̃Ψ(X,Y, Z) = F̃Ψ(X,Z, Y ),

(13) FΨ(X,ΨY,ΨZ) = −qFΨ(X,Y, Z), F̃Ψ(X,ΨY,ΨZ) = −qF̃Ψ(X,Y, Z),

and moreover, using (9), we have

FΨ(X,Y, Z) = (∇X g̃)(Y, Z), F̃Ψ(X,Y, Z) = q(∇̃Xg)(Y,Z).
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4. Adapted connections

A linear connection D on an almost Norden manifold (M2n, J, g) is said to be
an adapted connection with respect to an almost Norden structure (J, g) of M2n

if D parallelizes both J and g, that is, DJ = 0 and Dg = 0. A necessary and
sufficient condition for a linear connection D, on an almost Norden manifold
(M2n, J, g) with torsion, to be an adapted connection with respect to an almost
Norden structure (J, g) on M2n is given in [9]. Moreover if J is integrable, then
for a Norden manifold, there exists a unique adapted connection D with respect
to (J, g), whose torsion tensor T satisfies [9]:

T (X,Y ) = T (JX, JY ), T (X,Y, Z) + T (Y, Z,X) + T (Z,X, Y ) = 0,

where T (X,Y, Z) = g(T (X,Y ), Z). Recently, Kumar et al. [15] extensively
studied adapted connections on Kähler-Norden golden manifolds. Hence, fol-
lowing the above description, we define an adapted connection for an almost
complex metallic Norden manifold as below.

Definition. Let D be a linear connection on an almost complex metallic Nor-
den manifold (M2n,Ψ, g). We say the connection D is an adapted connec-
tion with respect to the almost complex metallic Norden structure (Ψ, g) of
(M2n,Ψ, g) if D parallelizes both Ψ and g, that is, DΨ = 0 and Dg = 0.

On an almost complex metallic Norden manifold (M2n,Ψ, g), using (2), we
derive

(14) (DXJ
Ψ)Y = ± 2

(p− 2σc
p,q)i

(DXΨ)Y, NJΨ = − 4

p2 + 4q
NΨ,

therefore we have

FJΨ = ± 2

(p− 2σc
p,q)i

FΨ.

This allows us to link the notion of adapted connections on almost Norden
manifolds and almost complex metallic Norden manifolds, hence we have the
following observation immediately.

Theorem 4.1. Let D be a linear connection on an almost complex metallic
Norden manifold (M2n,Ψ, g). Then the connection D is an adapted connection
with respect to the almost complex metallic Norden structure (Ψ, g) if and only if
D is an adapted connection with respect to its induced almost Norden structure
(JΨ, g).

Let ∇a be an adapted connection with respect to an almost complex metal-
lic Norden structure (Ψ, g) of an almost complex metallic Norden manifold
(M2n,Ψ, g). Denote by Sa the potential tensor of ∇a with respect to the
Levi-Civita connection ∇ of g, where Sa is a (1, 2)-tensor field. Then

(15) Sa(X,Y ) = ∇a
XY −∇XY,

and we can parameterize all the adapted connections to (Ψ, g) as below:
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Theorem 4.2. Let (M2n,Ψ, g) be an almost complex metallic Norden mani-
fold. Then the set of all linear connections adapted with respect to an almost
complex metallic Norden structure (Ψ, g) of M2n is{

∇+ Sa : (∇XΨ)Y = ΨSa(X,Y )− Sa(X,ΨY ),

g(Sa(X,Y ), Z) + g(Sa(X,Z), Y ) = 0
}

(16)

for any vector fields X,Y, Z on M2n.

Proof. The proof of the theorem follows immediately from the following ex-
pressions

(∇a
XΨ)Y = (∇XΨ)Y −ΨSa(X,Y ) + Sa(X,ΨY ),

and

(∇a
Xg)(Y,Z) = −g(Sa(X,Y ), Z)− g(Sa(X,Z), Y ). �

Lemma 4.3. Let ∇a be an adapted connection on a Kähler-Norden metallic
manifold (M2n,Ψ, g) and T a be the torsion tensor of the adapted connection
on M2n. Then

(i) g(Sa(X,Y ),ΨZ) = −g(Sa(X,Z),ΨY ),
(ii) Sa(ΨX,Y ) = ΨSa(Y,X) + T a(ΨX,Y ).

Proof. Since ∇a is an adapted connection on M2n, from (16), we have

(17) Sa(X,ΨY ) = ΨSa(X,Y ), g(Sa(X,Y ), Z) = −g(Sa(X,Z), Y ).

Therefore

g(Sa(X,Y ),ΨZ) = −g(Sa(X,ΨZ), Y ) = −g(Sa(X,Z),ΨY ).

Also

Sa(ΨX,Y ) = ∇a
ΨXY −∇ΨXY

= T a(ΨX,Y ) + Ψ(∇a
YX −∇YX)

= T a(ΨX,Y ) + ΨSa(Y,X).

Hence the proof is complete. �

Theorem 4.4. Let ∇a be an adapted connection on a Kähler-Norden metallic
manifold (M2n,Ψ, g) and T a be the torsion tensor of the adapted connection
on M2n. Then for any vector fields X,Y, Z on M2n, we have

(18) Sa(X,Y, Z) =
1

2

{
T a(X,Y, Z)− T a(Y,Z,X) + T a(Z,X, Y )

}
,

where Sa(X,Y, Z) = g(Sa(X,Y ), Z) and T a(X,Y, Z) = g(T a(X,Y ), Z).

Proof. Since T a is the torsion tensor of the adapted connection ∇a, from (15),
we have

(19) T a(X,Y, Z) = Sa(X,Y, Z)− Sa(Y,X,Z).
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Using (17), we derive

(20) T a(Y, Z,X) = −Sa(Y,X,Z) + Sa(Z,X, Y ),

(21) T a(Z,X, Y ) = Sa(Z,X, Y ) + Sa(X,Y, Z).

Hence, the assertion follows from (19)–(21). �

Lemma 4.5. For an almost complex metallic Norden manifold (M2n,Ψ, g),
we have

(i) (∇XΨ)ΨY = Ψ̃(∇XΨ)Y ,
(ii) (∇XΨ)Y = − 1

qΨ(∇XΨ)ΨY ,

(iii) g((∇XΨ)Y,Z) = g((∇XΨ)Z, Y ),

(iv) g((∇XΨ)ΨY,Z) = g((∇XΨ)Y, Ψ̃Z),
(v) g((∇XΨ)ΨY,Z) = pg((∇XΨ)Y,Z)− g((∇XΨ)ΨZ, Y ).

For a torsion-free linear connection∇, Kobayashi and Nomizu (see [14], The-
orem 3.4, page 143) introduced a special connection ∇ on an almost complex
manifold (M2n, J, g), which parallelizes the almost complex structure J , that
is, ∇J = 0, and is given by

∇XY = ∇XY −Q(X,Y )

for any vector fields X,Y on M2n, where

Q(X,Y ) =
1

4

{
(∇JY J)X + J((∇Y J)X) + 2J((∇XJ)Y )

}
.

Then, after simplification

∇XY = ∇XY +
1

2
(∇XJ)JY +

1

4

{
(∇Y J)JX − (∇JY J)X

}
,

this further can be written as

∇XY = ∇0
XY +

1

4

{
(∇Y J)JX − (∇JY J)X

}
,

where ∇0
XY = ∇XY + 1

2 (∇XJ)JY and ∇0J = 0.

Recently, Blaga and Nannicini [2] defined a linear connection ∇0 on an
almost complex metallic Norden manifold (M2n,Ψ, g) by

(22) ∇0
XY = ∇XY +

2

p2 + 4q
Ψ(∇XΨ)Y − p

p2 + 4q
(∇XΨ)Y

for any vector fields X,Y on M2n and they showed that the connection ∇0

is an adapted connection with respect to an almost complex metallic Norden
structure (Ψ, g), where ∇ is the Levi-Civita connection of g.

Theorem 4.6. Let (M2n,Ψ, g) be an almost complex metallic Norden manifold
with connection ∇0 which parallelizes Ψ. Then a connection ∇ defined by
∇XY = ∇0

XY + S(X,Y ), for any vector fields X,Y on M2n, parallelizes Ψ if

and only if the tensor field S satisfies S(X,ΨY ) = ΨS(X,Y ).

Proof. It is immediate. �
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If ∇ parallelizes Ψ, then after straightforward calculations and using Theo-
rem 4.6 and Lemma 4.5, we derive

(23) S(X,Y ) = − 1

p2 + 4q
Ψ̃(∇Y Ψ)X +

1

p2 + 4q
(∇ΨY Ψ)X.

Hence using (22) and (23), the connection ∇ is given by

∇XY = ∇XY +
2

p2 + 4q
Ψ(∇XΨ)Y − p

p2 + 4q
(∇XΨ)Y

− 1

p2 + 4q
Ψ̃(∇Y Ψ)X +

1

p2 + 4q
(∇ΨY Ψ)X.(24)

For an almost complex structure J on M2n, we know

ΨJ =
1

2

[
pI ±

(
(p− 2σc

p,q)i
)
J
]
,

then on substitution the last expression in (24), we obtain

(25) ∇XY = ∇XY +
1

2
(∇XJ)JY +

1

4

{
(∇Y J)JX − (∇JY J)X

}
,

which is the connection introduced by Kobayashi and Nomizu in [14]. Thus,
we have the following definition:

Definition. Let (M2n,Ψ, g) be an almost complex metallic Norden manifold
and ∇ be a Levi-Civita connection on M2n. We call the connection ∇ given
by (24), which parallelizes Ψ, a Kobayashi-Nomizu metallic Norden type con-
nection on M2n.

Corollary 4.7. Let T be a torsion tensor of the Kobayashi-Nomizu metallic

Norden type connection ∇̃ on an almost complex metallic Norden manifold
(M2n,Ψ, g). Then

T (X,Y ) = − 1

p2 + 4q
NΨ(X,Y ),

hence an almost complex metallic structure Ψ is integrable if and only if the
Kobayashi-Nomizu metallic Norden type connection ∇ on M2n is torsion-free.

Corollary 4.8. If (M2n,Ψ, g) is a Kähler-Norden metallic manifold, then from
(24), we have ∇ = ∇, that is, the Kobayashi-Nomizu metallic Norden type
connection coincides with the Levi-Civita connection on M2n.

Remark 4.9. Etayo and Santamaŕıa [5] defined a Yano type connection ∇? on
an almost complex manifold (M2n, J, g) as

(26) ∇?
XY = ∇XY +

1

2
(∇Y J)JX +

1

4

{
(∇XJ)JY − (∇JXJ)Y

}
for any vector fields X,Y on M2n. Hence using (24) and (25) in (26), we call
the following connection

∇?
XY = ∇XY +

2

p2 + 4q
Ψ(∇Y Ψ)X − p

p2 + 4q
(∇Y Ψ)X
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− 1

p2 + 4q
Ψ̃(∇XΨ)Y +

1

p2 + 4q
(∇ΨXΨ)Y,(27)

as the Yano metallic Norden type connection on an almost complex metallic
Norden manifold (M2n,Ψ, g), where ∇ is the Levi-Civita connection on M2n.
If T ? is the torsion tensor of the Yano metallic Norden type connection ∇? on
an almost complex metallic Norden manifold (M2n,Ψ, g), then

T ?(X,Y ) =
1

p2 + 4q
NΨ(X,Y ),

hence an almost complex metallic structure Ψ is integrable if and only if the
Yano metallic Norden type connection∇? on M2n is torsion-free. If (M2n,Ψ, g)
is a Kähler-Norden metallic manifold, then ∇? = ∇.

Let T 0 be the torsion tensor of the adapted connection ∇0 given in (22) on
(M2n,Ψ, g). Then it is given by

(28) T 0(X,Y ) =
(2Ψ− pI)

p2 + 4q

{
(∇XΨ)Y − (∇Y Ψ)X

}
,

this further can be written as

T 0(X,Y ) =
1

p2 + 4q

{
(2Ψ− pI)(∇XΨY −∇Y ΨX)− (pΨ + 2qI)[X,Y ]

}
and this verifies

T 0(ΨX,Y ) + T 0(X,ΨY )− pT 0(X,Y ) =
(2Ψ− pI)

p2 + 4q
NΨ(X,Y ),

where NΨ is the Nijenhuis tensor field Ψ. In particular, if Ψ is integrable, then

T 0(ΨX,Y ) + T 0(X,ΨY ) = pT 0(X,Y ).

It should be observed that for p = 0, q = −1 and Ψ is integrable, the adapted
connection ∇0 coincides with the adapted canonical connection defined by
Ganchev et al. in [8].

Theorem 4.10. Let ∇0 be an adapted connection on an almost complex metal-
lic Norden manifold (M2n,Ψ, g). Then (M2n,Ψ, g) is a Kähler-Norden metallic
manifold if and only if the connection ∇0 is torsion-free.

Proof. Let the connection ∇0 be torsion-free. Then from (11) and (28), we
have

(29) FΨ(X,Y, Z) = FΨ(Y,X,Z).

Then from (12), (13) and (29), we get

FΨ(X,Y, Z) = −1

q
FΨ(X,ΨY,ΨZ)

= −1

q
FΨ(ΨY,ΨZ,X)

=
1

q2
FΨ(ΨY,Ψ2Z,ΨX)
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=
p

q2
FΨ(ΨY,ΨZ,ΨX) +

1

q
FΨ(ΨY,Z,ΨX)

= −p
q
FΨ(X,Y,ΨZ)− FΨ(X,Y, Z),

this implies

(30) FΨ(X,Y, Z) = − p

2q
FΨ(X,Y,ΨZ).

Therefore

FΨ(X,Y, Ψ̃Z) = − p

2q
FΨ(X,Y,ΨΨ̃Z),

this further gives

(31) FΨ(X,Y,ΨZ) =
p

2
FΨ(X,Y, Z).

Hence from (30) and (31), we have

FΨ(X,Y, Z) = −p
2

4q
FΨ(X,Y, Z),

this implies that the tensor field F vanishes identically and hence (M2n,Ψ, g)
is a Kähler-Norden metallic manifold. The converse implication is trivial. �

Salimov [16] defined a special connection of the first type for anti-Hermitian
(Norden) manifolds. Following the same technique in [16], we have the following
definition.

Definition. A linear connection ∇1
XY = ∇XY +S1(X,Y ) on an almost com-

plex metallic Norden manifold (M2n,Ψ, g) is said to be a special connection of
the first type if it satisfies ∇1g̃ = 0 and g(S1(X,Y ),ΨZ) = g(S1(X,Z),ΨY ),
where ∇ is the Levi-Civita connection of g and S1 is a (1, 2)-tensor field.

By taking the covariant derivative of the twin metallic Norden metric g̃ with
respect to ∇1, we get

(32) (∇1
X g̃)(Y, Z) = (∇X g̃)(Y,Z)− g(S1(X,Y ),ΨZ)− g(S1(X,Z),ΨY ).

Assume ∇1 is a special connection of the first type on an almost complex
metallic Norden manifold (M2n,Ψ, g). Then from (32), we have

g(S1(X,Y ),ΨZ) =
1

2
(∇X g̃)(Y,Z) =

1

2
g((∇XΨ)Y,Z),

this implies

S1(X,Y ) = − 1

2q
Ψ̃(∇XΨ)Y.

Hence the special connection of the first type on an almost complex metallic
Norden manifold (M2n,Ψ, g) is given by

(33) ∇1
XY = ∇XY −

1

2q
Ψ̃(∇XΨ)Y
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for any vector fields X,Y on M2n. By straightforward calculations, we can
derive

(34) (∇1
XΨ)Y =

1

2
(∇XΨ)Y − 1

2q
Ψ̃(∇XΨ)(ΨY ),

(∇1
Xg)(Y,Z) =

1

2q
g((∇XΨ)(ΨY ), Z) +

1

2q
g(Y, Ψ̃(∇XΨ)Z)

=
1

2q
g(ΨY, (∇XΨ)Z) +

1

2q
g(Ψ̃Y, (∇XΨ)Z)

=
p

2q
g((∇XΨ)Y, Z) 6= 0,(35)

and the torsion tensor T 1 of ∇1 is given by

(36) T 1(X,Y ) = − 1

2q
Ψ̃
{

(∇XΨ)Y − (∇Y Ψ)X
}
.

Since (∇1
X g̃)(Y,Z) = (∇1

Xg)(ΨY,Z) + g((∇1
XΨ)Y,Z), the special connection

of the first type on an almost complex metallic Norden manifold (M2n,Ψ, g)
is an adapted connection with respect to an almost complex metallic Norden
structure (Ψ, g) on M2n if and only if ∇1g = 0. Hence from (35) and (36), we
have the following observation immediately.

Theorem 4.11. Let (M2n,Ψ, g) be an almost complex metallic Norden man-
ifold. Then the special connection of the first type ∇1 is not an adapted con-
nection with respect to an almost complex metallic Norden structure (Ψ, g) on
M2n. If (M2n,Ψ, g) is a Kähler-Norden metallic manifold, then ∇1 is an
adapted connection with respect to (Ψ, g) and torsion-free on M2n.

An almost complex metallic Norden manifold (M2n,Ψ, g) is said to be a
Kähler-Norden-Codazzi metallic manifold [17] if the twin Norden metallic met-
ric g̃ satisfies the following Codazzi type equation

(37) (∇X g̃)(Y, Z)− (∇Y g̃)(X,Z) = 0,

where ∇ is the Levi-Civita connection of g. The Codazzi type equation is also
equivalent to

(38) (∇XΨ)Y − (∇Y Ψ)X = 0.

Hence from (36) and (38), we have the following result.

Theorem 4.12. If an almost complex metallic Norden manifold (M2n,Ψ, g)
is a Kähler-Norden-Codazzi metallic manifold, then the special connection of
the first type ∇1 on M2n is torsion-free.

Using (ii) of Lemma 4.5, we can write

NΨ(X,Y ) = Ψ
{
− 1

q

(
(∇ΨXΨ)ΨY − (∇ΨY Ψ)ΨX

)
−
(
(∇XΨ)Y − (∇Y Ψ)X

)}
.(39)
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Hence, we have the following observation immediately.

Theorem 4.13. The almost complex metallic Norden structure of a Kähler-
Norden-Codazzi metallic manifold is always integrable.

Theorem 4.14. Let (M2n,Ψ, g) be an almost complex metallic Norden man-
ifold with the special connection of the first type ∇1. Then

qT 1(X,Y ) + T 1(ΨX,ΨY ) =
1

2

Ψ̃

Ψ
NΨ(X,Y ) = − 1

2q
Ψ̃2NΨ(X,Y ).

Proof. Since Ψ̃ = pI −Ψ, we can write (36) as

T 1(X,Y ) = − p

2q

{
(∇XΨ)Y − (∇Y Ψ)X

}
− 1

2q

{
Ψ(∇Y Ψ)X −Ψ(∇XΨ)Y

}
.

Using (i) of Lemma 4.5, we can write

T 1(ΨX,ΨY )=− p

2q

{
(∇ΨXΨ)ΨY−(∇ΨY Ψ)ΨX

}
−1

2

{
(∇ΨXΨ)Y−(∇ΨY Ψ)X

}
.

Further using (6) and (39), we derive

qT 1(X,Y ) + T 1(ΨX,ΨY ) =
p

2

NΨ(X,Y )

Ψ
− 1

2
NΨ(X,Y )

=
1

2

Ψ̃

Ψ
NΨ(X,Y ).

This completes the proof. �

Corollary 4.15. If the special connection of the first type ∇1 on an almost
complex metallic Norden manifold is torsion-free, then the almost complex
metallic Norden structure of an almost complex metallic Norden manifold is
always integrable.

Theorem 4.16. Let (M2n,Ψ, g) be an almost complex metallic Norden mani-
fold with the special connection of the first type ∇1. Then the following relation
holds

1

2q
g(NΨ(X,Z), Y ) = g(T 1(X,Y ), Z)− g(T 1(Z, Y ), X)

+
1

q
g(T 1(ΨX,Y ),ΨZ)− 1

q
g(T 1(ΨZ, Y ),ΨX)

for any vector fields X,Y, Z on M2n.

Proof. Using Lemma 4.5 with (36), after straightforward calculations, we derive

g(T 1(X,Y ), Z) = − 1

2q
g(Ψ(∇XΨ)Z, Y ) +

1

2q
g((∇Y Ψ)ΨX,Z),

g(T 1(Z, Y ), X) = − 1

2q
g(Ψ(∇ZΨ)X,Y ) +

p

2q
g((∇Y Ψ)Z,X)
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− 1

2q
g((∇Y Ψ)ΨX,Z),

g(T 1(ΨX,Y ),ΨZ) =
1

2
g((∇ΨXΨ)Z, Y )− 1

2
g((∇Y Ψ)ΨX,Z),

g(T 1(ΨZ, Y ),ΨX) =
1

2
g((∇ΨZΨ)X,Y )−p

2
g((∇Y Ψ)Z,X)+

1

2
g((∇Y Ψ)ΨX,Z).

Thus taking into account the expression (6), the proof is complete. �

Salimov [16] defined a special connection of the second type for anti-Hermit-
ian (Norden) manifolds. Following the same technique as in [16], we have the
following definition.

Definition. A linear connection ∇2
XY = ∇XY +S2(X,Y ) on an almost com-

plex metallic Norden manifold (M2n,Ψ, g) is said to be a special connection of
the second type if it satisfies ∇2g̃ = 0 and g(S2(X,Y ),ΨZ) = g(S2(Z, Y ),ΨX)
for any vector fields X,Y, Z on M2n, where ∇ is the Levi-Civita connection of
g and S2 is a (1, 2)-tensor field.

Since (∇2
X g̃)(Y,Z) = (∇2

Xg)(ΨY, Z)+g((∇2
XΨ)Y, Z), the special connection

of the second type on an almost complex metallic Norden manifold (M2n,Ψ, g)
is an adapted connection with respect to an almost complex metallic Norden
structure (Ψ, g) on M2n if and only if ∇2g = 0. Moreover, if (M2n,Ψ, g) is
a Kähler-Norden metallic manifold, then the special connection of the second
type ∇2 is an adapted connection with respect to (Ψ, g) on M2n.

By taking the covariant derivative of the twin metallic Norden metric g̃ with
respect to ∇2, we get

(∇2
X g̃)(Y,Z) = (∇X g̃)(Y, Z)− g(S2(X,Y ),ΨZ)− g(S2(X,Z),ΨY ).

Since (∇X g̃)(Y,Z) = g((∇XΨ)Y, Z) and ∇2g = 0, we get

(40) g(S2(X,Y ),ΨZ) + g(S2(X,Z),ΨY ) = g((∇XΨ)Y,Z).

This further gives

2g(S2(X,Y ),ΨZ) = g((∇XΨ)Y,Z)− g((∇Y Ψ)Z,X) + g((∇ZΨ)X,Y ).

If (M2n,Ψ, g) is a Kähler-Norden-Codazzi metallic manifold, then the last
expression reduces to

2g(S2(X,Y ),ΨZ) = g((∇XΨ)Y,Z),

this further implies

S2(X,Y ) = − 1

2q
Ψ̃(∇XΨ)Y.

Hence, we have the following result.
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Theorem 4.17. If (M2n,Ψ, g) is a Kähler-Norden-Codazzi metallic manifold,
then the special connection of the second type ∇2 is given by

(41) ∇2
XY = ∇XY −

1

2q
Ψ̃(∇XΨ)Y

for any vector fields X,Y on M2n.

From (33) and (41), it is obvious that on a Kähler-Norden-Codazzi metallic
manifold, the special connections of the first type and of the second type coin-
cide with each other. Next, denote the torsion tensor of the special connection
of the second type ∇2 by T 2. Then from (40), we obtain

(42) g(T 2(X,Y ),ΨZ) = g((∇XΨ)Z, Y )− g((∇Y Ψ)Z,X),

further using (iii) of Lemma 4.5, we get

(43) g(T 2(X,Y ),ΨZ) = g((∇XΨ)Y,Z)− g((∇Y Ψ)X,Z).

Thus, we have the following observation immediately.

Theorem 4.18. If (M2n,Ψ, g) is a Kähler-Norden-Codazzi metallic manifold,
then the special connection of the second type ∇2 on M2n is torsion-free.

Next, by replacing Z by ΨZ in (42) and further using (iii) of Lemma 4.5,
we derive

(44) g(T 2(X,Y ), Z) = −1

q

{
g((∇XΨ)ΨY, Z)− g((∇Y Ψ)ΨX,Z)

}
.

Using (i) of Lemma 4.5, we can write (36) as

(45) g(T 1(X,Y ), Z) = − 1

2q

{
g((∇XΨ)ΨY,Z)− g((∇Y Ψ)ΨX,Z)

}
,

hence from (44) and (45), we have the following theorem.

Theorem 4.19. Let (M2n,Ψ, g) be an almost complex metallic Norden mani-
fold. Then the torsion tensors of the special connection of the first type and of
the second type satisfy

T 1(X,Y ) =
1

2
T 2(X,Y )

for any vector fields X,Y on M2n.

Consequently, from Theorem 4.16, we have the following result.

Theorem 4.20. Let (M2n,Ψ, g) be an almost complex metallic Norden man-
ifold with the special connection of the second type ∇2. Then the following
relation holds

g(NΨ(X,Z), Y ) = qg(T 2(X,Y ), Z)− qg(T 2(Z, Y ), X)

+ g(T 2(ΨX,Y ),ΨZ)− g(T 2(ΨZ, Y ),ΨX)

for any vector fields X,Y, Z on M2n.
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Theorem 4.21. Let (M2n,Ψ, g) be an almost complex metallic Norden man-
ifold with the special connection of the second type ∇2. Then the following
relation holds

g(NΨ(X,Y ), Z)=g(T 2(ΨX,Y ),ΨZ)+g(T 2(X,ΨY ),ΨZ)−pg(T 2(X,Y ),ΨZ)

for any vector fields X,Y, Z on M2n.

Proof. By replacing X by ΨX in (43) and further using (i) of Lemma 4.5, we
derive

g(T 2(ΨX,Y ),ΨZ) = g((∇ΨXΨ)Y, Z)− pg((∇Y Ψ)X,Z) + g(Ψ(∇Y Ψ)X,Z),

and similarly

g(T 2(X,ΨY ),ΨZ) = pg((∇XΨ)Y,Z)− g(Ψ(∇XΨ)Y, Z)− g((∇ΨY Ψ)X,Z).

On using (6) and (43) in the addition of the last two expressions, the proof is
immediate. �

Remark 4.22. It is important to note that from Theorems 4.20 and 4.21, we
can deduce the conditions for the integrability of an almost complex metallic
structure Ψ of an almost complex metallic Norden manifold with the special
connection of the second type ∇2.

5. Classification of almost Norden manifolds

Let (M2n, J, g) be an almost complex manifold with a Norden metric and g̃
be the associated twin metric on M2n. If ∇ is the Levi-Civita connection of g,
then Ganchev and Borisov [7] defined a tensor field FJ of type (0, 3) on M2n

by

FJ(X,Y, Z) = (∇X g̃)(Y,Z) = g((∇XJ)Y, Z)

for any vector fields X,Y, Z on M2n. Then the 1-form associated with FJ is
given by

θJ(X) =
∑

1≤i,j≤2n

gijg((∇eiJ)ej , X)

for any vector field X on M2n, where {ei}2ni=1 is a local basis of M2n and gij

is the inverse matrix of g. Then Ganchev and Borisov [7] established a classifi-
cation of the almost complex manifolds with a Norden metric with respect to
the covariant derivative of the almost complex structure as below:

Theorem 5.1. Let (M2n, J, g) be an almost Norden manifold. Then the eight
classes of M2n are characterized by the following conditions:

(i) The class W0 or Kähler-Norden manifold:

FJ(X,Y, Z) = 0

for any vector fields X,Y, Z on M2n.
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(ii) The class W1 or conformal Kähler-Norden manifold:

FJ(X,Y, Z) =
1

2n

{
g(X,Y )θJ(Z) + g(X,Z)θJ(Y )

+ g(X, JY )θJ(JZ) + g(X, JZ)θJ(JY )
}

for any vector fields X,Y, Z on M2n.
(iii) The class W2 or special Norden manifold:

FJ(X,Y, JZ) + FJ(Y,Z, JX) + FJ(Z,X, JY ) = 0, θJ = 0

for any vector fields X,Y, Z on M2n or equivalently NJ = 0, θJ = 0.
(iv) The class W3 or quasi-Kähler-Norden manifold:

FJ(X,Y, Z) + FJ(Y,Z,X) + FJ(Z,X, Y ) = 0

for any vector fields X,Y, Z on M2n or equivalently ÑJ = 0.
(v) The class W1 ⊕W2 or complex Norden manifold:

FJ(X,Y, JZ) + FJ(Y, Z, JX) + FJ(Z,X, JY ) = 0

for any vector fields X,Y, Z on M2n or equivalently NJ = 0.
(vi) The class W2 ⊕W3 or semi-Kähler-Norden manifold:

θJ = 0.

(vii) The class W1 ⊕W3:

FJ(X,Y, Z) + FJ(Y,Z,X) + FJ(Z,X, Y )

=
1

n

{
g(X,Y )θJ(Z) + g(Z,X)θJ(Y ) + g(Y,Z)θJ(X)

+ g(X,JY )θJ(JZ) + g(Y, JZ)θJ(JX) + g(Z, JX)θJ(JY )
}

for any vector fields X,Y, Z on M2n.
(viii) The class W or the whole class of almost Norden manifolds: no condi-

tion.

From [6], it is known that for an almost Norden manifold, there exists a
local basis {X1, . . . , Xn, Y1, . . . , Yn} of TpM , p ∈M , satisfying

JXi = Yi, g(Xi, Xj) = g(Yi, Yj) = 0, g(Xi, Yj) = ∂ij , ∀i, j ∈ {1, . . . , n},
which is called an adapted local basis to (J, g) and for this adapted local basis,
we have (see [4])

θJ(X) =

n∑
i=1

{
g((∇Xi

J)Yi, X) + g((∇Yi
J)Xi, X)

}
.

If (M2n,Ψ, g) is an almost complex metallic Norden manifold, then using
the adapted local basis to the almost complex metallic Norden structure (Ψ, g),
the 1-form θΨ associated with FΨ is given by

θΨ(X) =

n∑
i=1

{
g((∇Xi

Ψ)Yi, X) + g((∇Yi
Ψ)Xi, X)

}
.
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Using (2), it is easy to show that

(46) g(X, JΨY ) =
2

(p− 2σc
p,q)i

g(X,ΨY )− p

(p− 2σc
p,q)i

g(X,Y ),

(47) (∇XJ
Ψ)Y =

2

(p− 2σc
p,q)i

(∇XΨ)Y,

this implies

(48) θJΨ(X) =
2

(p− 2σc
p,q)i

θΨ(X),

(49) θJΨ(JΨX) =
( 2

(p− 2σc
p,q)i

)2

θΨ(ΨX)− 2p(
(p− 2σc

p,q)i
)2 θΨ(X),

and

(50) FJΨ(X,Y, Z) =
2

(p− 2σc
p,q)i

FΨ(X,Y, Z).

Hence using (2), (46)-(50), we have the analogous classification of the almost
complex metallic Norden manifolds as below.

Theorem 5.2. Let (M2n,Ψ, g) be an almost complex metallic Norden mani-
fold. Then the eight classes of M2n are characterized by the following condit-
ions:

(i) The class W0 or Kähler-Norden metallic manifold:

FΨ(X,Y, Z) = 0

for any vector fields X,Y, Z on M2n.
(ii) The class W1 or conformal Kähler-Norden metallic manifold:

FΨ(X,Y, Z)

=
1

n(p2 + 4q)

{
g(X,Y )θΨ(pΨZ + 2qZ) + g(X,Z)θΨ(pΨY + 2qY )

}
+

1

n(p2 + 4q)

{
g(X,ΨY )θΨ(pZ − 2ΨZ) + g(X,ΨZ)θΨ(pY − 2ΨY )

}
for any vector fields X,Y, Z on M2n.

(iii) The class W2 or special Norden metallic manifold:

FΨ(X,Y,ΨZ) + FΨ(Y,Z,ΨX) + FΨ(Z,X,ΨY ) = 0, θΨ = 0

for any vector fields X,Y, Z on M2n or equivalently NΨ = 0, θΨ = 0.
(iv) The class W3 or quasi-Kähler-Norden metallic manifold:

FΨ(X,Y, Z) + FΨ(Y,Z,X) + FΨ(Z,X, Y ) = 0

for any vector fields X,Y, Z on M2n equivalently ÑΨ = 0.
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(v) The class W1 ⊕W2 or Norden metallic manifold:

FΨ(X,Y,ΨZ) + FΨ(Y, Z,ΨX) + FΨ(Z,X,ΨY ) = 0

for any vector fields X,Y, Z on M2n or equivalently NΨ = 0.
(vi) The class W2 ⊕W3 or semi-Kähler-Norden metallic manifold:

θΨ = 0.

(vii) The class W1 ⊕W3:

FΨ(X,Y, Z) + FΨ(Y, Z,X) + FΨ(Z,X, Y )

=
2

n(p2 + 4q)

{
g(X,Y )θΨ(pΨZ + 2qZ) + g(Y, Z)θΨ(pΨX + 2qX)

+ g(Z,X)θΨ(pΨY + 2qY )
}

+
2

n(p2 + 4q)

{
g(X,ΨY )θΨ(pZ − 2ΨZ) + g(Y,ΨZ)θΨ(pX − 2ΨX)

+ g(Z,ΨX)θΨ(pY − 2ΨY )
}

for any vector fields X,Y, Z on M2n.
(viii) The class W or the whole class of almost Norden metallic manifolds:

no condition.

It is known that an adapted connection D with respect to an almost Nor-
den structure (J, g) on an almost Norden manifold (M2n, J, g) is said to be a
canonical connection if its torsion tensor T satisfies

T (X,Y, Z) + T (Y,Z,X) = T (JX, Y, JZ) + T (Y, JZ, JX)

for any vector fields X,Y, Z on M2n. From [9], we know that on an almost Nor-
den manifold there exists a unique canonical connection. In [9], Ganchev and
Mihova defined 1-form t associated with the torsion tensor T of the canonical
connection D on (M2n, J, g) as

t(v) =
∑

1≤i,j≤2n

gijg(T (v, ei), ej),

where {ei}2ni=1 is a local basis of M2n, p ∈M2n, v ∈ TpM2n and gij is the inverse
matrix of g. Later, Ganchev and Mihova [9] provided a characterization of the
eight classes of almost Norden manifolds by means of conditions on the torsion
tensor of the canonical connection and its associated 1-form.

From Theorem 4.1, we know that the connection D is an adapted connection
with respect to an almost complex metallic Norden structure (Ψ, g) if and
only if D is an adapted connection with respect to its induced almost Norden
structure (JΨ, g). Hence, we can define a canonical connection on an almost
complex metallic Norden manifold (M2n,Ψ, g) as below.

Definition. Let (M2n,Ψ, g) be an almost complex metallic Norden manifold.
Then a connection ∇c on (M2n,Ψ, g) is said to be a canonical connection if ∇c
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is an adapted connection with respect to the induced almost Norden structure
(JΨ, g) and satisfies

(51) T c(X,Y, Z) + T c(Y, Z,X) = T c(JΨX,Y, JΨZ) + T c(Y, JΨZ, JΨX)

for any vector fields X,Y, Z on M2n, where T c is the torsion tensor of ∇c.

Inspired by the characterization of the eight classes of almost Norden mani-
folds given by Ganchev and Mihova [9], we also characterize analogous classes
for an almost complex metallic Norden manifold (M2n,Ψ, g), by means of
conditions on the torsion tensor T c of the canonical connection ∇c, which is
adapted with respect to the induced almost Norden structure (JΨ, g) on M2n

as below.

Theorem 5.3. Let (Ψ, g) be an almost complex metallic Norden structure with
the induced almost Norden structure (JΨ, g) on an almost complex metallic
Norden manifold (M2n,Ψ, g). If T c is the torsion tensor of the canonical
connection ∇c on (M2n,Ψ, g), then the eight classes for (M2n,Ψ, g) can be
characterized by the following conditions:

(i) The class W0 or Kähler-Norden metallic manifold:

T c(X,Y ) = 0

for any vector fields X,Y on M2n.
(ii) The class W1 or conformal Kähler-Norden metallic manifold:

T c(X,Y ) =
1

n(p2 + 4q)

{
tc(X)(pΨY + 2qY )− tc(Y )(pΨX + 2qX)

+ tc(ΨX)(pY − 2ΨY )− tc(ΨY )(pX − 2ΨX)
}

for any vector fields X,Y on M2n, where tc is 1-form associated with
the torsion tensor T c.

(iii) The class W2 or special Norden metallic manifold:

(p2 + 2q)T c(X,Y ) = −2T c(ΨX,ΨY ) + p
{
T c(ΨX,Y ) + T c(X,ΨY )

}
,

and

tc(X) = 0

for any vector fields X,Y on M2n.
(iv) The class W3 or quasi-Kähler-Norden metallic manifold:

T c(ΨX,Y ) + ΨT c(X,Y ) = pT c(X,Y )

for any vector fields X,Y on M2n.
(v) The class W1 ⊕W2 or Norden metallic manifold:

(p2 + 2q)T c(X,Y ) = −2T c(ΨX,ΨY ) + p
{
T c(ΨX,Y ) + T c(X,ΨY )

}
for any vector fields X,Y on M2n.
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(vi) The class W2 ⊕W3 or semi-Kähler-Norden metallic manifold:

tc(X) = 0

for any vector field X on M2n.
(vii) The class W1 ⊕W3:

pT c(X,Y )−
{
T c(ΨX,Y ) + Ψ(T c(X,Y ))

}
=

1

n

{
tc(Y )ΨX − tc(ΨY )X

}
for any vector fields X,Y on M2n.

(viii) The class W or the whole class of almost Norden metallic manifolds:
no condition.
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