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TRANSLATION THEOREM FOR THE ANALYTIC

FEYNMAN INTEGRAL ASSOCIATED WITH BOUNDED

LINEAR OPERATORS ON ABSTRACT WIENER SPACES

AND AN APPLICATION

Jae Gil Choi

Abstract. The Cameron–Martin translation theorem describes how

Wiener measure changes under translation by elements of the Cameron–

Martin space in an abstract Wiener space (AWS). Translation theorems
for the analytic Feynman integrals also have been established in the lit-

erature. In this article, we derive a more general translation theorem for

the analytic Feynman integral associated with bounded linear operators
(B.L.OP.) on AWSs. To do this, we use a certain behavior which exists

between the analytic Fourier–Feynman transform (FFT) and the convo-
lution product (CP) of functionals on AWS. As an interesting application,

we apply this translation theorem to evaluate the analytic Feynman in-

tegral of the functional

F (x) = exp

(
− iq

∫ T

0
x(t)y(t)dt

)
, y ∈ C0[0, T ], q ∈ R \ {0}

defined on the classical Wiener space C0[0, T ].

1. Introduction and background

In order to provide our translation theorem for the “analytic Feynman in-
tegral associated with B.L.OP.s” on AWSs, we first follow the exposition of
[7, 10,11,16,17,19].

Let H be a real infinite dimensional Hilbert space with inner product ⟨·, ·⟩
and associated norm | · |, and let B be a real separable Banach space with norm
∥ · ∥. It is assumed that H is continuously, linearly, and densely embedded in
B by a natural injection. Let ν be a centered Gaussian probability measure on
(B,B(B)), where B(B) is the Borel σ-field of B. The triple (H,B, ν) is called an
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AWS if ∫
B
exp

(
i(h, x)

)
dν(x) = exp

(
− 1

2
|h|2

)
for any h ∈ B∗, where (·, ·) denotes the natural dual paring (B∗–B pairing),
and where B∗ is the topological dual of B. Let H∗ be the topological dual of
H. Then B∗ is identified as a dense subspace of H∗ ∼= H in the sense that, for
all y ∈ B∗ and x ∈ H,

(1.1) ⟨y, x⟩ = (y, x).

Thus we have the triple

(1.2) B∗ ⊂ H∗ ∼= H ⊂ B.
The Hilbert space H is called the Cameron–Martin space in the AWS B. For
more details, see [14,16,19].

Let {en}∞n=1 be a complete orthonormal set in H such that ej ’s are in B∗.
For each h ∈ H and x ∈ B, a stochastic linear functional (h, x)∼ is defined by

(1.3) (h, x)∼ =

{
lim
n→∞

∑n
j=1⟨h, ej⟩(ej , x), if the limit exists,

0, otherwise.

By the definition of the stochastic linear functional (·, ·)∼ and (1.1), it is clear
that (θ, x)∼ = (θ, x) for all θ ∈ B∗ and x ∈ B. It is well-known [11, 16, 17, 19]
that for every non-zero h in H, (h, x)∼ is a non-degenerate Gaussian random
variable on B with mean 0 and variance |h|2. The stochastic linear functional
(h, x)∼ given by (1.3) is essentially independent of the choice of the complete
orthonormal set used in its definition. Also, if both h and x are in H, then
Parseval’s identity gives (h, x)∼ = ⟨h, x⟩. Furthermore, (h, λx)∼ = (λh, x)∼ =
λ(h, x)∼ for any λ ∈ R, h ∈ H and x ∈ B.

Remark 1.1. By Kallianpur and Bromley’s study [16], the limit in (1.3) exists
for ν-a.e. x ∈ B, and for each h ∈ H(∼= H∗), the Gaussian random variable
(h, ·)∼ is in L2(B,B(B), ν). For a more detailed study, we also refer the reader
to the reference [19, Section 1.4].

Given two Banach spaces X and Y, let L(X,Y) denote the Banach space of
all B.L.OP.s from X to Y, and let L(X) ≡ L(X,X).

By the definition of the Banach space adjoint operator, given an operator
A ∈ L(B), there exists a B.L.OP. A∗ : B∗ → B∗ such that for all θ ∈ B∗ and
x ∈ B,
(1.4) (A∗θ)x = θ(Ax).

By the structure of the dual paring and the triple (1.2), equation (1.4) can be
rewritten by

(A∗θ, x) = (θ,Ax).

We are now ready to state the motivation and the aim of this article. The
Cameron–Martin translation theorem on classical Wiener space was introduced
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in [2,3]. On the other hand, Cameron and Storvick [5,6] provided a translation
theorem for the analytic Feynman integral of functionals on the classical Wiener
space.

The Cameron–Martin translation theorem describes how Wiener measure
changes under translation by certain elements of the Cameron–Martin space.
The translation theorem and an analogue on AWSs can be found in [18,20].

Theorem 1.2. Let F ∈ L1(B,B(B), ν) and let x0 ∈ H. Then it follows that∫
B
F (x+ x0)dν(x) = exp

(
− 1

2
|x0|2

)∫
B
F (x) exp

(
(x0, x)

∼)dν(x).
There have been a tremendous number of papers in various useful applica-

tions of the translation theorem in connection with infinite dimensional anal-
ysis. Recently, Chang and Choi [7] developed the translation theorem for the
abstract Wiener integral associated with B.L.OP.s on B.

Theorem 1.3 ([7]). Let A1 and A2 be operators in L(B), let θ ∈ B∗, and let F
be a functional on (B,B(B), ν) such that F (A1x) is ν-integrable over B. Then
it follows that

(1.5)

∫
B
F (A1x+A1A

∗
2θ)dν(x)

= exp

(
− 1

2
|A∗

2θ|2
)∫

B
F (A1x) exp

(
(θ,A2x)

)
dν(x).

On the other hand, the analytic FFT is one of the most important trans-
forms defined on infinite dimensional Banach spaces. The analytic FFT and
its properties are similar in many respects to the Fourier transform defined for
functions on Euclidean spaces. In [1,8,9], the authors defined an analytic FFT
for functionals on B and studied the existence of the FFT and related topics.
For an elementary survey of the analytic FFT, see the reference [23] and the
references cited therein. Recently, in [10], Choi defined an analytic Feynman
integral and an analytic FFT associated with B.L.OP.s on B, and investigated
many properties of the integral and the transform.

In this paper, we study a certain aspect of the analytic Feynman integral
of functionals on B. More precisely, we establish a translation theorem for the
analytic Feynman integral associated with B.L.OP.s on B, see Theorem 3.2
below. To provide a simple proof of our translation theorem for the analytic
Feynman integral, we use the structures of the analytic FFT associated with
B.L.OP.s and the CP with respect to B.L.OP.s on the AWS B. That is, using a
certain relation between the analytic FFT and the CP for functionals on B, we
establish a translation theorem for the analytic Feynman integral associated
with B.L.OP.s on B. As an interesting application, we apply this translation
theorem to evaluate the analytic Feynman integral of the functional

F (x) = exp

(
− iq

∫ T

0

x(t)y(t)dt

)
, y ∈ C0[0, T ], q ∈ R \ {0}
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defined on the classical Wiener space (C0[0, T ],mw).

2. Analytic Fourier–Feynman transform associated with bounded
linear operators

In order to define an analytic Feynman integral of functionals on the AWS
B, we need the concept of the “scale-invariant measurability”. Let W(B) be
the class of ν-Carathéodory measurable subsets of B. In order to study the
translation structure for the analytic Feynman integral on B, we will consider
the complete probability space (B,W(B), ν).

A subset S of B is said to be scale-invariant measurable (s.i.m.), see [11],
provided ρS is W(B)-measurable for every ρ > 0, and a s.i.m. subset N of
B is said to be scale-invariant null provided ν(ρN) = 0 for every ρ > 0. A
property that holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere (s-a.e.). A functional F on B is said to be s.i.m.
provided F is defined on a s.i.m. set and F (ρ · ) is W(B)-measurable for every
ρ > 0. If two functionals F and G on B are equal s-a.e., i.e., for each ρ > 0,
ν({x ∈ B : F (ρx) ̸= G(ρx)}) = 0, then we denote this equivalence relation
between the functionals by F ≈ G.

Given a ν-integrable functional F on B and an operator A in L(B), we will
denote the abstract Wiener integral (associated with the operator A) of F by

IA[F ] ≡ IA,x[F (Ax)] ≡
∫
B
F (Ax)dν(x).

Let C, C+ and C̃+ denote the set of complex numbers, complex numbers
with positive real part and non-zero complex numbers with nonnegative real
part, respectively.

Definition 2.1. Let F : B → C be a functional which is s-a.e. defined and
s.i.m. such that given an operator A ∈ L(B), the abstract Wiener integral

JF (A;λ) = IA,x[F (λ−1/2Ax)] =

∫
B
F (λ−1/2Ax)dν(x)

exists as a finite number for all λ > 0. If there exists a function J∗
F (A; ·)

analytic on C+ such that J∗
F (A;λ) = JF (A;λ) for all λ > 0, then J∗

F (A;λ) is
defined to be the analytic Wiener integral (associated with the operator A) of
F over B with parameter λ. For λ ∈ C+ we write

(2.1) Ian.wλ

A [F ] ≡ Ian.wλ

A,x [F (Ax)] ≡
∫ an.wλ

B
F (Ax)dν(x) = J∗

F (A;λ).

Let q ̸= 0 be a real number, and let F be a s.i.m. functional whose analytic
Wiener integral Ian.wλ

A [F ] exists for all λ ∈ C+. If the following limit exists,
we call it the analytic Feynman integral (associated with the operator A) of F
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with parameter q, and we write
(2.2)

Ian.fq
A [F ] ≡ Ian.fq

A,x [F (Ax)] ≡
∫ an.fq

B
F (Ax)dν(x) = lim

λ→−iq
Ian.wλ

A,x [F (Ax)]

where λ approaches −iq through values in C+.

The definitions of the analytic FFT and the CP [1, 8, 9, 23] on classical and
abstract Wiener spaces are based on the structure of the analytic Feynman
integral and the concept of the scale-invariant measurability. We now provide
the definition of the L1-analytic FFT associated with B.L.OP.s [10] on AWSs.

Definition 2.2. Let F : B → C be a s.i.m. functional such that for A ∈ L(B)
and y ∈ B, the following analytic Wiener integral

Tλ,A(F )(y) = Ian.wλ

A,x [F (y +Ax)]

exists. Then for q ∈ R \ {0}, the L1-analytic FFT of F associated with the

operator A and with parameter q, T
(1)
q,A(F ), is defined by the formula

(2.3) T
(1)
q,A(F )(y) = lim

λ→−iq
λ∈C+

Tλ,A(F )(y)

for s-a.e. y ∈ B, whenever this limit exists. That is to say,

(2.4) T
(1)
q,A(F )(y) = Ian.fq

A,x [F (y +Ax)]

for s-a.e. y ∈ B.

We note that if the L1-analytic FFT T
(1)
q,A(F ) exists for a B.L.OP. A ∈ L(B)

and if F ≈ G, then T
(1)
q,A(G) exists and T

(1)
q,A(G) ≈ T

(1)
q,A(F ).

Remark 2.3. (i) One can see that for each A ∈ L(B), T (1)
q,A(F ) ≈ T

(1)
q,−A(F ),

since ∫
B
F (x)dν(x) =

∫
B
F (−x)dν(x).

Moreover, from equations (2.1), (2.2), (2.3) and (2.4), it follows that

(2.5) Ian.fq
A [F ] = T

(1)
q,A(F )(0)

in the sense that if either side exists, then both sides exist and equality holds.
(ii) If A is the identity operator on B, then this definition agrees with the

previous definition of the (ordinary) analytic FFT [1,8, 9].

The following definition of the CP is based on the definition of the CP
studied in [15].
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Definition 2.4. Let F and G be s.i.m. functionals on B. For λ ∈ C̃+ and
A1, A2 ∈ L(B), we define their CP with respect to {A1, A2} (if it exists) by

(2.6)

(F ∗G)
(A1,A2)
λ (y)

=

{∫ an.wλ

B F (y +A1x)G(y +A2x)dν(x), λ ∈ C+∫ an.fq
B F (y +A1x)G(y +A2x)dν(x), λ = −iq, q ∈ R, q ̸= 0.

When λ = −iq, we denote (F ∗G)
(A1,A2)
λ by (F ∗G)

(A1,A2)
q .

3. Translation theorem for analytic Feynman integral

In this section, we establish a translation theorem for the analytic Feynman
integral of functionals F on AWS (H,B, ν).

Lemma 3.1. Let F be a s.i.m. functional on B such that given a B.L.OP.
A1 ∈ L(B), F (A1(ρx)) is Wiener integrable over B for each ρ > 0. Assume

that given a non-zero real q, the L1-analytic FFT T
(1)
q,A1

(F ) of F exists. Then

for each θ ∈ B∗ and any B.L.OP. A2 ∈ L(B), it follows that

T
(1)
q,A1

(F )(y +A1A
∗
2θ) = exp

(
iq

2
|A∗

2θ|2 + iq(θ, y)

)
(F ∗Rq,θ)

(A1,A2)
q (y)

for s-a.e. y ∈ B, where the functional Rq,θ : B → C is given by

Rq,θ(x) = exp
(
− iq(θ, x)

)
.

Proof. By the assumption of the existence of T
(1)
q,A1

(F ), we may assume that

the analytic Wiener integral (associated with the B.L.OP. A1)

Tλ,A1
(F )(y) = Ian.wλ

A1,x
[F (y +A1x)]

exists for all λ ∈ C+. Next, for λ > 0, let

(3.1) Gλ
y (A1x) = F (y + λ−1/2A1x).

Using (3.1) and (1.5) with F replaced with Gλ
y , it follows that for λ > 0,

Tλ,A1(F )(y +A1A
∗
2θ)

= IA1,x

[
F
(
y +A1A

∗
2θ + λ−1/2A1x

)]
= IA1,x

[
F
(
y + λ−1/2(A1x+ λ1/2A1A

∗
2θ)

)]
= IA1,x

[
Gλ

y (A1x+ λ1/2A1A
∗
2θ)

]
(3.2)

= exp

(
− 1

2
|λ1/2A∗

2θ|2
)∫

B
Gλ

y (A1x) exp
(
(λ1/2θ,A2x)

)
dν(x)

= exp

(
− λ

2
|A∗

2θ|2
)∫

B
F (y + λ−1/2A1x) exp

(
λ1/2(θ,A2x)

)
dν(x)

= exp

(
− λ

2
|A∗

2θ|2 + iq(θ, y)

)
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×
∫
B
F (y + λ−1/2A1x) exp

(
− iq(θ, y) + λ1/2(θ,A2x)

)
dν(x).

On the other hand, by Definition 2.4, it follows that for λ > 0,

(3.3)

(F ∗Rq,θ)
(A1,A2)
λ (y)

=

∫
B
F (y + λ−1/2A1x)Rq,θ(y + λ−1/2A2x)dν(x)

=

∫
B
F (y + λ−1/2A1x) exp

(
− iq(θ, y + λ−1/2A2x)

)
dν(x)

=

∫
B
F (y + λ−1/2A1x) exp

(
− iq(θ, y)− iqλ−1/2(θ,A2x)

)
dν(x).

Let

E1(λ;x) = exp
(
− iq(θ, y) + λ1/2(θ,A2x)

)
and

E2(λ;x) = exp
(
− iq(θ, y)− iqλ−1/2(θ,A2x)

)
for λ ∈ C+. Since E1(λ;x) and E2(λ;x) are analytic functions of λ ∈ C+ and
limλ→−iq E1(λ;x) = limλ→−iq E2(λ;x), there exist a connected and bounded

neighbourhood Γq of −iq in the right-half complex plane C̃+ and a positive
real number M > 0 which satisfy |E1(λ;x)| ≤ M and |E2(λ;x)| ≤ M for all
λ ∈ Γq. Furthermore, for each λ > 0, |E1(λ;x)| and |E2(λ;x)| are ν-integrable
functions of x ∈ B. Thus, using Hölder’s inequality, it follows that for λ > 0,∫

B

∣∣∣(E1(λ;x)− E2(λ;x)
)
F (y + λ−1/2A1x)

∣∣∣dν(x)
≤

∫
B

∣∣E1(λ;x)− 1
∣∣∣∣F (y + λ−1/2A1x)

∣∣dν(x)
+

∫
B

∣∣E2(λ;x)− 1
∣∣∣∣F (y + λ−1/2A1x)

∣∣dν(x)
≤

∥∥E1(·;x)− 1
∥∥
∞,Γq∩R

∫
B

∣∣F (y + λ−1/2A1x)
∣∣dν(x)

+
∥∥E2(·;x)− 1

∥∥
∞,Γq∩R

∫
B

∣∣F (y + λ−1/2A1x)
∣∣dν(x) < ∞

where

∥E1(·;x)− 1∥∞,Γq∩R = sup
λ∈Γq∩R

|E1(λ;x)− 1|

and

∥E2(·;x)− 1∥∞,Γq∩R = sup
λ∈Γq∩R

|E2(λ;x)− 1|.

Hence, by the dominated convergence theorem, we see that

lim
λ→−iq
λ∈C+

∫
B

∣∣∣F (y + λ−1/2A1x)E1(λ;x)− F (y + λ−1/2A1x)E2(λ;x)
∣∣∣dν(x) = 0
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and so that

(3.4)

lim
λ→−iq
λ∈C+

∫
B
F (y + λ−1/2A1x)E1(λ;x)dν(x)

= lim
λ→−iq
λ∈C+

∫
B
F (y + λ−1/2A1x)E2(λ;x)dν(x)

for s-a.e. y ∈ B. Applying this and using (2.3), (3.2), (3.3), (2.6) with G
replaced with Rq,θ, and (3.4), we finally have that

T
(1)
q,A1

(F )(y +A1A
∗
2θ)

= lim
λ→−iq
λ∈C+

Tλ,A1
(F )(y +A1A

∗
2θ)

= lim
λ→−iq
λ∈C+

exp

(
− λ

2
|A∗

2θ|2 + iq(θ, y)

)

×
∫
B
F (y + λ−1/2A1x) exp

(
− iq(θ, y) + λ1/2(θ,A2x)

)
dν(x)

= exp

(
iq

2
|A∗

2θ|2 + iq(θ, y)

)
lim

λ→−iq
λ∈C+

∫
B
F (y + λ−1/2A1x)E1(λ;x)dν(x)

= exp

(
iq

2
|A∗

2θ|2 + iq(θ, y)

)
lim

λ→−iq
λ∈C+

∫
B
F (y + λ−1/2A1x)E2(λ;x)dν(x)

= exp

(
iq

2
|A∗

2θ|2 + iq(θ, y)

)
lim

λ→−iq
λ∈C+

(F ∗Rq,θ)
(A1,A2)
λ (y)

= exp

(
iq

2
|A∗

2θ|2 + iq(θ, y)

)
(F ∗Rq,θ)

(A1,A2)
q (y)

as desired. □

Using (2.6) with y = 0 and with G replaced with Rq,θ, and (2.5), we
have the translation theorem for the analytic Feynman integral associated with
B.L.OP.s.

Theorem 3.2. Let A1 and F be as in Lemma 3.1. Assume that given a
non-zero real q, the analytic Feynman integral associated with the operator A1,

Ian.fq
A1,x

[F (A1x)], exists. Then for each θ ∈ B∗ and any A2 ∈ L(B),

(3.5)

Ian.fq
A1,x

[F (A1x+A1A
∗
2θ)]

= exp

(
iq

2
|A∗

2θ|2
)∫ an.fq

B
F (A1x) exp

(
− iq(θ,A2x)

)
dν(x).
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Remark 3.3. It is of interest to note that if F ≡ 1, then equation (3.5) yields
an analytic Feynman integration formula: given an operator A ∈ L(B),

(3.6) Ian.fq
A,x

[
exp

(
− iq(A∗θ, x)

)]
= exp

(
− iq

2
|A∗θ|2

)
.

Choosing A1 and A2 to be the identity operator I on B, the assertion in the
following corollary holds true. This result subsumes a similar result obtained
in [1, 5, 6].

Corollary 3.4. Assume that given a non-zero real q, the analytic Feynman

integral Ian.fq
I,x [F (x)] exists. Then for each x0 ∈ B∗,

(3.7)

Ian.fq
I,x [F (x+ x0)]

≡
∫ an.fq

B
F (x+ x0)dν(x)

= exp

(
iq

2
|x0|2

)∫ an.fq

B
F (x) exp

(
− iq(x0, x)

)
dν(x).

Taking F to be a cylinder functional, we have the following evaluation for-
mula for the analytic Feynman integral, which plays a key role in order to
generalize the Wiener integration formula [24]. The analytic Feynman integral
version of the Wiener integration formula will be provided Section 4 below.

Theorem 3.5. Given a vector β in B∗ and a Lebesgue integrable function f on
R, let F : B → C be given by F (x) = f((β, x)) for s-a.e. x ∈ B. If the analytic

Feynman integral Ian.fq
A1,x

[F (A1x)] associated with an operator A1 ∈ L(B) exists,
then for each θ ∈ B∗ and any A2 ∈ L(B),

(3.8)

∫ an.fq

B
f((A∗

1β, x)) exp
(
− iq(A∗

2θ, x)
)
dν(x)

= exp

(
− iq

2
|A∗

2θ|2
)
Ian.fq
A1,x

[
f((A∗

1β, x) + (A∗
1β,A

∗
2θ))

]
.

4. On the classical Wiener space

Let B = C0[0, T ] be the classical Wiener space (i.e., the Banach space of all
real-valued continuous functions x on the interval [0, T ] with x(0) = 0) with
the uniform norm ∥x∥ = supt∈[0,T ] |x(t)|. The classical Wiener measure mw

characterized by

mw({x : x(t) ≤ a}) = 1√
2πt

∫ a

−∞
exp

(
− u2

2t

)
du

for t ∈ (0, T ]. Let H = C ′
0[0, T ] be the Cameron–Martin space in C0[0, T ],

namely, the space of all functions h ∈ C0[0, T ] such that h is absolutely contin-
uous and the derivative Dh ≡ dh/dt is of class L2[0, T ]. The inner product on
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H = C ′
0[0, T ] is given by

⟨h1, h2⟩C′
0
=

∫ T

0

Dh1(t)Dh2(t)dt.

It is well-known that B∗ ≡ C∗
0 [0, T ] can be identified as the space

C∗
0 [0, T ] =

{
θ ∈ C ′

0[0, T ] : Dθ is a right continuous function

of bounded variation on [0, T ]
}
.

Then (C ′
0[0, T ], C0[0, T ],mw) is one of the most important examples of AWSs.

For more details, see [11,19].
It is well-known that {x(t) : (x, t) ∈ C0[0, T ]× [0, T ]} is a standard Wiener

process on the probability space (C0[0, T ],B(C0[0, T ]),mw) where B(C0[0, T ])
denotes the Borel σ-field on C0[0, T ]. Let W(C0[0, T ]) denote the class of all
Wiener measurable subsets. It is also well-known that the mw-Carathéodory
completion σ(B(C0[0, T ])) is equal to the σ-field W(C0[0, T ]). We note that
(C0[0, T ],W(C0[0, T ]),mw) is a complete probability space.

Remark 4.1. Let U be the unitary operator from L2[0, T ] onto C ′
0[0, T ] given by

Uv(t) =
∫ t

0
v(s)ds for v ∈ L2[0, T ]. Let RCBV[0, T ] be the space of real-valued

functions on [0, T ] which are right continuous and are of bounded variation
on [0, T ]. Then we see that C∗

0 [0, T ] = {Uv : v ∈ RCBV[0, T ]}. For any
h ∈ C ′

0[0, T ] and g ∈ C∗
0 [0, T ], let the operation ⊙ between C ′

0[0, T ] and C∗
0 [0, T ]

be defined by h⊙ g = U(DhDg). Then (C∗
0 [0, T ],⊙) is a commutative algebra

with the identity function e : [0, T ] → R given by e(t) = t.

Note that if {gn}∞n=1 is a complete orthonormal set of functions in C ′
0[0, T ],

each of whose derivatives is in RCBV[0, T ], then the sequence {Dgn}∞n=1 is
a complete orthonormal set of functions in L2[0, T ] and the stochastic linear
functional (h, x)∼ given by (1.3) on C ′

0[0, T ]×C0[0, T ] equals the Paley–Wiener–

Zygmund stochastic integral
∫ T

0
Dh(t)dx(t) for each h ∈ C ′

0[0, T ] and mw-a.e.
x ∈ C0[0, T ], see [21,22].

Let Aw : C ′
0[0, T ] → C ′

0[0, T ] be the linear operator defined by

Awh(t) =

∫ t

0

h(s)ds.

Then, we see that the Hilbert space adjoint operator A∗
w of Aw is given by

A∗
wh(t) = th(T )−

∫ t

0

h(s)ds =

∫ t

0

(h(T )− h(s))ds,

and the linear operator Sw = A∗
wAw = A∗

w(A
∗
w)

∗ is given by

(4.1) Swh(t) =

∫ T

0

min{s, t}h(s)ds.
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Furthermore, we see that Sw is a self-adjoint, compact operator on C ′
0[0, T ] and

that

⟨h1, Swh2⟩C′
0
= ⟨Awh1, Awh2⟩C′

0
=

∫ T

0

h1(t)h2(t)dt

for all h1, h2 ∈ C ′
0[0, T ]. Hence Sw is positive definite.

The notational conveniences in the observations (i) and (ii) below will be
very useful in the development of our application of the translation theorem.

(i) By the definitions of the operators Aw, A
∗
w and Sw, one can see that the

restrictions Aw|C∗
0 [0,T ], A

∗
w|C∗

0 [0,T ] and Sw|C∗
0 [0,T ] are in L(C∗

0 [0, T ]). We shall
use the same symbols Aw, A

∗
w and Sw for the restrictions Aw|C∗

0 [0,T ], A
∗
w|C∗

0 [0,T ]

and Sw|C∗
0 [0,T ] respectively.

(ii) Also, one can see that the extension operators

Ãw, Ã
∗
w, S̃w : C0[0, T ] → C0[0, T ]

of Aw, A
∗
w and Sw, respectively, are in the space L(C0[0, T ]). Also, we shall

again use the same symbols Aw, A
∗
w and Sw, respectively, for the extension

operators.

Remark 4.2. Note that for each h ∈ C ′
0[0, T ], h is a continuous function of

bounded variation on [0, T ]. Thus, it follows that C ′
0[0, T ] ⊂ C∗

0 [0, T ] in view of

set inclusion structure, and the operator S̃w

∣∣
C′

0[0,T ]
≡ Sw : C ′

0[0, T ] → C ′
0[0, T ]

given by (4.1) is a trace class operator of C ′
0[0, T ] in view of [19, Theorem 1.4.6,

p.83]. In fact, the trace of Sw is given by TrSw = 1
2T

2. Also, one can see easily
that the range of the operator Sw : C0[0, T ] → C0[0, T ] is a subset of C∗

0 [0, T ],
namely, Sw ∈ L(C0[0, T ], C

∗
0 [0, T ]).

The following examples are simple consequences of our translation theorem.

Example 4.3. Letting B = C0[0, T ] and choosing A1 and A2 to be the operator
A∗

w, we have the following analytic Feynman integration formula from (3.5):
for a s.i.m. functional F on C0[0, T ], it follows that
(4.2)

Ian.fq
A∗

w,x

[
F (A∗

wx+ Swθ)
]

≡ Ian.fq
A∗

w,x

[
F (A∗

wx+A∗
w(A

∗
w)

∗θ)
]

∗
= exp

(
iq

2
|(A∗

w)
∗θ|2C′

0

)∫ an.fq

C0[0,T ]

F (A∗
wx) exp

(
− iq(θ,A∗

wx)
)
dmw(x)

= exp

(
iq

2
|Awθ|2C′

0

)∫ an.fq

C0[0,T ]

F (A∗
wx) exp

(
− iq(Awθ, x)

)
dmw(x)

= exp

(
iq

2

∫ T

0

(θ(t))2dt

)∫ an.fq

C0[0,T ]

F (A∗
wx) exp

(
− iq

∫ T

0

θ(t)dx(t)

)
dmw(x),

where by
∗
= we mean that if either side exists, both sides exist and equality

holds. Similarly, letting B = C0[0, T ] and choosing A1 = Aw and A2 = A∗
w in
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(3.5), it also follows that

(4.3)

Ian.fq
Aw,x

[
F (Awx+AwAwθ)

]
∗
= exp

(
iq

2

∫ T

0

(θ(t))2dt

)
×
∫ an.fq

C0[0,T ]

F (Awx) exp

(
− iq

∫ T

0

θ(t)dx(t)

)
dmw(x).

Letting F ≡ 1, equation (4.2) yields the well-known analytic Feynman inte-
gration formula: for any function θ in C∗

0 [0, T ],

(4.4)

∫ an.fq

C0[0,T ]

exp

(
− iq

∫ T

0

θ(t)dx(t)

)
dmw(x) = exp

(
− iq

2

∫ T

0

(θ(t))2dt

)
.

Also, equation (4.3) with F ≡ 1 yields equation (4.4).

Setting x0(t) =
∫ t

0
θ(s)ds in equation (3.7) with F ≡ 1, we also have equation

(4.4).

Example 4.4. Letting A2 = Aw, equation (3.6) yields the following analytic
Feynman integration formula: for any function θ in C∗

0 [0, T ],∫ an.fq

C0[0,T ]

exp

(
− iq

∫ T

0

(θ(T )− θ(t))dx(t)

)
dmw(x)

= exp

(
− iq

2

∫ T

0

(θ(T )− θ(t))2dt

)
,

which can be obtained from (3.7) with x0(t) =
∫ t

0
(θ(T )− θ(s))ds.

5. An application

In [24], Yeh applied Fernique’s theorem [13, 19] to calculate the Wiener
integral

(5.1)

∫
C0[0,T ]

exp

(
η2

∫ T

0

x(t)y(t)dt

)
dmw(x), −π

2
≤ η ≤ π

2
.

More precisely, Yeh first used a generalized translation result [4, Theorem I]
and the immediate consequence (a refinement of Fernique’s theorem):∫

C0[0,T ]

exp

(
iµ

∫ T

0

(x(t))2dt

)
dmw(x) =

(
sec(iµ)1/2

)1/2
, µ ∈ R.

But, Yeh’s procedure to evaluate the Wiener integral (5.1), as well as the
application of [4, Theorem I], is very difficult and complicated.

Using our translation theorem, we in this section will provide an explicit
form of the analytic Feynman integral which is an analytic Feynman integral
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version of the Wiener integration formula (5.1); namely,∫ an.fq

C0[0,T ]

exp

(
− iq

∫ T

0

x(t)y(t)dt

)
dmw(x) with y ∈ C0[0, T ].

Given a function f in L1(R) and β ∈ C∗
0 [0, T ] \ {0}, let F (x) = f((β, x)∼)

for s-a.e. x ∈ C0[0, T ]. Then by the change of variable theorem, we have, for
each ρ > 0 and any A ∈ L(B),

(5.2)

∫
C0[0,T ]

F (ρAx)dmw(x) =

∫
C0[0,T ]

f(ρ(A∗β, x))dmw(x)

=
(
2πρ2|A∗β|2C′

0

)−1/2
∫
R
f(u) exp

(
− u2

2ρ2|A∗β|2C′
0

)
du.

Since the exponential functionH(ρ;u) = exp(−u2/2ρ2|A∗β|2C′
0
) is in C0(R), the

space of bounded continuous functions on R that vanish at infinity, the Wiener

integral (5.2) exists as a finite number. In fact, for all λ ∈ C̃+, |H(λ−1/2;u)| ≤ 1
and H(λ−1/2;u) is an analytic function of λ ∈ C+. Applying the Morera
theorem, one can show that the Lebesgue integral∫

R
f(u) exp

(
− λu2

2|A∗β|2C′
0

)
du

in the last expression of (5.2) with ρ > 0 replaced with λ−1/2 is an analytic
function of λ ∈ C+. Thus, in view of Definition 2.1 and by the dominated con-
vergence theorem, it follows that for all non-zero real q, the analytic Feynman
integral associated with the operator A ∈ L(C0[0, T ]) in the following equation
exists and is calculated by

(5.3)

Ian.fq
A,x [f((A∗β, x))] = lim

λ→−iq
λ∈C+

∫
R
f(u) exp

(
− λu2

2|A∗β|2C′
0

)
du

=

(
−iq

2π|A∗β|2C′
0

)1/2 ∫
R
f(u) exp

(
iqu2

2|A∗β|2C′
0

)
du.

Next, applying equations (3.8) and (5.3), it follows that for all B.L.OP.s A1

and A2 in L(C0[0, T ]),

(5.4)

∫ an.fq

C0[0,T ]

f((A∗
1β, x)) exp

(
− iq(A∗

2θ, x)
)
dmw(x)

=

(
−iq

2π|A∗
1β|2C′

0

)1/2

exp

(
− iq

2
|A∗

2θ|2C′
0

)
×
∫
R
f(u) exp

(
iq(u− (A∗

1β,A
∗
2θ))

2

2|A∗
1β|2C′

0

)
du.
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Letting A1 = I (the identity operator), and A2 = Aw in (5.4) yields the formula
(5.5)∫ an.fq

C0[0,T ]

f((β, x)) exp
(
− iq(A∗

wθ, x)
)
dmw(x)

=

(
−iq

2π|β|2C′
0

)1/2

exp

(
− iq

2
|A∗

wθ|2C′
0

)∫
R
f(u) exp

(
iq(u− (β,A∗

wθ))
2

2|β|2C′
0

)
du

=

(
−iq

2π|β|2C′
0

)1/2

exp

(
− iq

2
|A∗

wθ|2C′
0
+

iq(Awβ, θ)
2

2|β|2C′
0

)
×
∫
R
f(u) exp

(
iq

2|β|2C′
0

u2 − iq(Awβ, θ)

|β|2C′
0

u

)
du.

Let β(t) = t for t ∈ [0, T ], and for a continuous function y of bounded

variation on [0, T ], let θ(t) =
∫ t

0
y(s)ds. Then θ ∈ C∗

0 [0, T ] and

exp
(
− iq(A∗

wθ, x)
)
= exp

(
− iq

∫ T

0

x(t)y(t)dt

)
for all x ∈ C0[0, T ] and q ∈ R \ {0}. For notational convenience, let

Y (t) ≡ θ(t) =

∫ t

0

y(s)ds,

Z(t) ≡
∫ t

0

Y (t)dt = Awθ(t),

and

∥Y ∥2 ≡
∫ T

0

(Y (t))2dt = |Awθ|2C′
0
.

Then it follows that

(5.6) |A∗
wθ|2C′

0
=

∫ T

0

(θ(T )− θ(t))2dt = T (Y (T ))2 − 2Y (T )Z(T ) + ∥Y ∥2

and

(5.7) (Awβ, θ) = ⟨Awβ, θ⟩C′
0
=

∫ T

0

ty(t)dt = TY (T )− Z(T ).

Substituting (5.6) and (5.7) into (5.5), it follows that∫ an.fq

C0[0,T ]

f(x(T )) exp

(
− iq

∫ T

0

x(t)y(t)dt

)
dmw(x)

=

(
−iq

2πT

)1/2

exp

(
− iq

2

(
∥Y ∥2 − Z(T )2

T

))
×
∫
R
f(u) exp

(
iq

2T
u2 − iq

(
Y (T )− Z(T )

T

)
u

)
du
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and ∫ an.fq

C0[0,T ]

exp

(
− iq

∫ T

0

x(t)y(t)dt

)
dmw(x)

= exp

(
− iq

2

(
T (Y (T ))2 − 2Y (T )Z(T ) + ∥Y ∥2

))
= exp

(
− iq

2
|A∗

wθ|2C′
0

)
= exp

(
− iq

2

∫ T

0

(∫ T

t

y(s)ds

)2

dt

)
,

which are the main results in [24]. In [12], Chung and Kang calculated this
problem via the concept of the conditional abstract Wiener integral.
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