DOI QR코드

DOI QR Code

GENERALIZED CAMERON-STORVICK TYPE THEOREM VIA THE BOUNDED LINEAR OPERATORS

  • Received : 2019.04.12
  • Accepted : 2019.09.25
  • Published : 2020.05.01

Abstract

In this paper, we establish the generalized Cameron-Storvick type theorem on function space. We then give relationships involving the generalized Cameron-Storvick type theorem, modified generalized integral transform and modified convolution product. A motivation of studying the generalized Cameron-Storvick type theorem is to generalize formulas and results with respect to the modified generalized integral transform on function space. From the some theories and formulas in the functional analysis, we can obtain some formulas with respect to the translation theorem of exponential functionals.

Keywords

References

  1. R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under translations, Ann. of Math. (2) 45 (1944), 386-396. https://doi.org/10.2307/1969276
  2. R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math. (2) 48 (1947), 385-392. https://doi.org/10.2307/1969178
  3. S. J. Chang and J. G. Choi, Translation theorem for function space integral associated with Gaussian paths and applications, to appear in the Bull. Iranian Math. Soc.
  4. S. J. Chang, J. G. Choi, and D. Skoug, Evaluation formulas for conditional function space integrals. I, Stoch. Anal. Appl. 25 (2007), no. 1, 141-168. https://doi.org/10.1080/07362990601052185
  5. S. J. Chang and D. M. Chung, Conditional function space integrals with applications, Rocky Mountain J. Math. 26 (1996), no. 1, 37-62. https://doi.org/10.1216/rmjm/1181072102
  6. S. J. Chang and H. S. Chung, Some expressions for the inverse integral transform via the translation theorem on function space, J. Korean Math. Soc. 53 (2016), no. 6, 1261-1273. https://doi.org/10.4134/JKMS.j150485
  7. S. J. Chang, H. S. Chung, and D. Skoug, Integral transforms of functionals in $L^2(C_{a,b}[0,\;T])$, J. Fourier Anal. Appl. 15 (2009), no. 4, 441-462. https://doi.org/10.1007/s00041-009-9076-y
  8. S. J. Chang, H. S. Chung, and D. Skoug, Some basic relationships among transforms, convolution products, first variations and inverse transforms, Cent. Eur. J. Math. 11 (2013), no. 3, 538-551. https: //doi.org/10.2478/s11533-012-0148-x
  9. K. S. Chang, B. S. Kim, and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener space, Numer. Funct. Anal. Optim. 21 (2000), no. 1-2, 97-105. https://doi.org/10.1080/01630560008816942
  10. S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transforms Spec. Funct. 14 (2003), no. 5, 375-393. https://doi.org/10.1080/1065246031000074425
  11. S. J. Chang, D. Skoug, and H. S. Chung, Relationships for modified generalized integral transforms, modified convolution products and first variations on function space, Integral Transforms Spec. Funct. 25 (2014), no. 10, 790-804. https://doi.org/10.1080/10652469.2014.918614
  12. D. M. Chung and U. C. Ji, Transforms on white noise functionals with their applications to Cauchy problems, Nagoya Math. J. 147 (1997), 1-23. https://doi.org/10.1017/S0027763000006292
  13. H. S. Chung and V. K. Tuan, Generalized integral transforms and convolution products on function space, Integral Transforms Spec. Funct. 22 (2011), no. 8, 573-586. https: //doi.org/10.1080/10652469.2010.535798
  14. L. Gross, Abstract Wiener spaces, in Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, 31-42, Univ. California Press, Berkeley, CA, 1967.
  15. M. K. Im, U. C. Ji, and Y. J. Park, Relations among the first variation, the convolutions and the generalized Fourier-Gauss transforms, Bull. Korean Math. Soc. 48 (2011), no. 2, 291-302. https://doi.org/10.4134/BKMS.2011.48.2.291
  16. B. J. Kim, Conditional integral transforms, conditional convolution products and first variations for some conditioning functions, Far East J. Math. Sci. (FJMS) 19 (2005), no. 3, 245-258.
  17. B. J. Kim and B. S. Kim, Parts formulas involving conditional integral transforms on function space, Korea J. Math. 22 (2014), no. 1, 57-69. https://doi.org/10.11568/kjm.2014.22.1.57
  18. B. J. Kim, B. S. Kim, and D. Skoug, Conditional integral transforms, conditional convolution products and first variations, Pan Amer. Math. J. 14 (2004), no. 3, 27-47.
  19. B. S. Kim and D. Skoug, Integral transforms of functionals in $L_2$($C_0$[0, T]), Rocky Mountain J. Math. 33 (2003), no. 4, 1379-1393. https://doi.org/10.1216/rmjm/1181075469
  20. H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics, Vol. 463, Springer-Verlag, Berlin, 1975.
  21. Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Functional Analysis 47 (1982), no. 2, 153-164. https://doi.org/10.1016/0022-1236(82)90103-3
  22. E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, NJ, 1967.
  23. J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments, Illinois J. Math. 15 (1971), 37-46. http://projecteuclid.org/euclid.ijm/1256052816 https://doi.org/10.1215/ijm/1256052816
  24. J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, #Inc., New York, 1973.