The concept of equality is given as a way of reading the equal sign without dealing it explicitly in elementary school mathematics. The meaning of the equal sign can be largely categorized as operational and relational views. However, most elementary school students understand the equal sign as an operational symbol for just writing the required answers. It is essential for them to understand a relational concept of the equal sign because algebraic thinking in middle school mathematics is based on students' understanding of a relational view of the equal sign. Recently, the relational meaning of the equal sign is emphasized in arithmetic. Hence it is necessary for elementary school students to have some activities so that they experience a relational meaning of the equal sign. In this study, we investigate the meaning of the equal sign and contexts of the equal sign in elementary school mathematics to discuss explicit ways to emphasize the concept of equality and relational views of the equal sign.
Given the importance of understanding the equal sign in developing early algebraic thinking, this paper investigated how a total of 695 students in grades 2~6 understood the equal sign. The students completed a questionnaire with three types of items (equation structure, equal sign definition, and open equation solving) based on the construct map by four different levels of understanding the equal sign. The questionnaire was analyzed by Rasch model. The results showed that about 80% of the students were at least Level 3 which means a basic relational understanding of the equal sign. However, the success rates varied across grades and it was noticeable that about 70% of the second graders remained at Level 1 or 2 which maintains an operational understanding of the equal sign. The results of item types demonstrated that item difficulty for the advanced relational thinking was the highest and this is the same even for the Level 4 students. This paper is expected to investigate elementary school students' understanding of the equal sign and provide implications of how to deal with the equal sign in the elementary school.
This paper reports findings from a written assessment which was designed to investigate Chinese primary school students' understanding of the equal sign and equation structure. The investigation included a sample of 110 Grade 3, 112 Grade 4, and 110 Grade 5 students from four schools in China. Significant differences were identified among the three grades and no gender differences were found. The majority of Grades 3 and 4 students were found to view the equal sign as a place indicator meaning "write the answer here" or "do something like computation", that is, holding an operational view of the equal sign. A part of Grade 5 students were found to be able to interpret the equal sign as meaning "the same as", that is, holding a relational view of the equal sign. In addition, even though it was difficult for Grade 3 students to recognize the underlying structure in arithmetic equation, quite a number of Grades 4 and 5 students were able to recognize the underlying structure on some tasks. Findings in this study suggest that Chinese primary school students demonstrate a relational understanding of the equal sign and a strong structural sense of equations in an earlier grade. Moreover, what found in the study support the argument that students' understanding of the equal sign is influenced by the context in which the equal sign is presented.
Recently, the 2022 revised mathematics curriculum has established achievement standards for equal sign and equality, and efforts have been made to examine teaching methods and student understanding of relational understanding of equal sign. In this context, this study conducted a lesson that emphasized relational understanding in an introduction to equal sign, and compared and analyzed the understanding of equal sign between the experimental group, which participated in the lesson emphasizing relational understanding and the control group, which participated in the standard lesson. For this purpose, two classes of students participated in this study, and the results were analyzed by administering pre- and post-tests on the understanding of equal sign. The results showed that students in the experimental group had significantly higher average scores than students in the control group in all areas of equation-structure, equal sign-definition, and equation-solving. In addition, when comparing the means of students by item, we found that there was a significant difference between the means of the control group and the experimental group in the items dealing with equal sign in the structure of 'a=b' and 'a+b=c+d', and that most of the students in the experimental group correctly answered 'sameness' as the meaning of equal sign, but there were still many responses that interpreted the equal sign as 'answer'. Based on these results, we discussed the implications for instruction that emphasizes relational understanding in equal sign introduction lessons.
The equal sign and equivalence are the most basic and core concepts in elementary mathematics, but there has been lack of research on how to teach these concepts with textbooks. Given this, this study analyzed elementary mathematics textbooks in terms of three instructional elements (i.e., emphasizing the meaning of the equal sign as a relational symbol, dealing with an equation as an object for reasoning, and using an equation with a missing value). In particular, this study analyzed 10 different mathematics textbook series that are newly used in 2022 and examined the overall trends and characteristics for teaching the equal sign and equivalence. The results of this study showed that the activities emphasizing the meaning of the equal sign as a relational symbol were most noticeable but the activities dealing with an equation as an object for reasoning or using an equation with a missing value were relatively rare. Based on the results of the analysis, this study provides textbook writers with implications on what to further consider in covering the equal sign and equivalence.
Understanding the equal sign is of great significance to the development of algebraic thinking. Given this importance, this study investigated in what ways a total of 695 students from second to sixth graders understand the equal sign. The results showed that students were successful in solving standard problems whereas they were poor at items demanding high relational thinking. It was noticeable that some of the students were based on computational thinking rather than relational understanding of the equal sign. The students had a difficulty both in understanding the structure of equations and in solving equations in non-standard problem contexts. They also had incomplete understanding of the equal sign. This paper is expected to explore the understanding of the equal sign by elementary school students in multiple problem contexts and to provide implications of how to promote students' understanding of the equal sign.
Journal of Elementary Mathematics Education in Korea
/
v.17
no.2
/
pp.207-223
/
2013
Teachers unfold a series of timeless mathematical symbols such as 5+2=7 in time by verbalizing the symbols in classrooms. A number sentence 5+2=7 is read in Korean as '5 더하기 2는(five plus two) 7과(seven) 같다(equals). Unlike in English, 5+2 and 7 are read first before the equal sign in Korean. This sequence of reading in Korean conflicts with the conventional linguistic sequence of writing from left to right. Ways of resolving the discrepancy between reading and writing sequences can make a difference students' understanding of the equal sign. Students would be in danger of perceiving the equal sign as an operational symbol, if a teacher resolves the discrepancy by subordinating reading sequence to linguistic convention of writing. This way of resolving results in the undesired phenomenon of changing the reading expressions in Korean elementary math textbook which represent relational notion of the equal sign into other reading expressions that represent operational notion of it. For understanding of relational notion of the equal sign, the discrepancy should be resolved by changing writing sequence in accordance with reading sequence. In addition, teaching of verbalizing the equal sign should be integrated with teaching of verbalizing inequality signs.
Journal of Elementary Mathematics Education in Korea
/
v.21
no.4
/
pp.643-662
/
2017
The first appearance of the equations in elementary school mathematics is in the expression of the equal sign in the addition sentences without its definition. Most elementary school students have operational understanding of the equal sign in equations. Moreover, students' opportunities to have a clear concept of the properties of operations are limited because they are used implicitly in the textbooks. Based on this fact, it has been argued that it is necessary to introduce the properties of operations explicitly in terms of specific numbers and to deal with various types of equations for understanding a relational meaning of the equal sign. In this study, we use equations to represent the implicit properties of operations and the relational meaning of the equal sign in elementary school mathematics with respect to students' level of understanding. In addition, we give some explicit examples which show how to apply them to make efficient computations.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1996.06a
/
pp.9-15
/
1996
In this paper, we propose a new detector based on the median-shift sign. We call it the median-shift sign (MSS) detector, which is an extension of the classical sign detector. We first analyze the problem of detecting a dc signal in noise of known probability density function (pdf). The MSS detector with the optimum median-shift value, the optimum MSS detector, performs better than the sign detector in Gaussian noise: it has the best performance among the detectors compared in Laplacian and Cauchy noise. It is shown that the MSS detectors with constant median-shift values are nearly equal to the optimum MSS detector. We also analyze the problem of detecting a dc signal when only partial information is available on the noise. The MSS detectors with constant median-shift values are almost equal to the sign detector in Gaussian noise: they perform better than the sign and Wilcoxon detectors for most signal ranges in Laplacian and Cauchy noise.
This study analyzed student noticing in a lesson that emphasized relational understanding of equal signs for first graders from four aspects: centers of focus, focusing interactions, mathematical tasks, and nature of the mathematical activity. Specifically, the instructional factors that emphasize the relational understanding of equal signs derived from previous research were applied to a first-grade addition and subtraction unit, and then lessons emphasizing the relational understanding of equal signs were conducted. Students' noticing in this lesson was comprehensively analyzed using the focusing framework proposed in the previous study. The results showed that in real classroom contexts centers of focus is affected by the structure of the equation and the form of the task, teacher-student interactions, and normed practices. In particular, we found specific teacher-student interactions, such as emphasizing the meaning of the equals sign or using examples, that helped students recognize the equals sign relationally. We also found that students' noticing of the equation affects reasoning about equation, such as being able to reason about the equation relationally if they focuse on two quantities of the same size or the relationship between both sides. These findings have implications for teaching methods of equal sign.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.