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Abstract

In this paper, we propose a new detector based on
the median-shift sign. We call it the median-shift
sign (MSS) detector, which is an extension of the
classical sign detector. We first analyze the problem
of detecting a dc signal in noise of known probabil-
ity density function (pdf). The MSS detector with
the optimum median-shift value, the optimum MSS
detector, performs better than the sign detector in
Gaussian noise: it has the best performance among
the detectors compared in Laplacian and Cauchy
noise. It is shown that the MSS detectors with con-
stant median-shift values are nearly equal to the
optimum MSS detector. We also analyze the prob-
lem of detecting a dc signal when only partial infor-
mation is available on the noise. The MSS detec-
tors with constant median-shift values are almost
equal to the sign detector in Gaussian noise: they
perform better than the sign and Wilcoxon detec-
tors for most signal ranges in Laplacian and Cauchy
noise,

I Introduction

The problem of signal detection can be considered
as a parameter test problem of a null hypothesis
against an alternative hypothesis [1]-[2]. As a con-
sequence, the knowledge of a priori information on
the parameter is required for establishing the hy-
pothesis testing problem. Unfortunately, it is very
difficult to exactly estimate the value of the param-
eter in practice. If we are not able to get a priori
information on the distribution of the parameter,
we cannot design an optimum parametric detector.
Although we can estimate the parameters in some
cases, small deviations of the parameters from the
theoretic model in the real environment may lead

to a significant performance degradation of the op-
timum parametric detector. In such cases, we shall
need a nonparametric detector {3]-[5].

For signal detection problems, the use of a non-
parametric detector results in systems with con-
stant probabilities of false alarm for large classes
of noise distributions, classes satisfying only a few
mild conditions. A nonparametric detector is there-
fore useful in statistical environments where de-
tailed information on the statistics of the noise is
not available. In addition to insensitivily to en-
vironment, a nonparametric detector exhibits sim-
plicity in implementation ai the expense of some
deterioration in performance compared to an opti-
mum detector. Therefore, nonparametric detectors
have been used in diverse areas [6]-[7] which include
radar, sonar, pattern recognition, fault detection,
biomedical signal processing, and so on.

Among the representative nonparametric detec-
tors are the sign, linear rank (Wilcozon), normal
scores (Fisher-Yates), polarity coincidence correla-
tor (PCC), and Mann-Whitney detectors. Other
nonparametric detectors can also be found in the
literature [8]-[13].

While the linear rank detectors exhibit excellent
performance relative to the optimum parametric de-
tector, especially in Gaussian noise, they have more
complicated structure and poorer performance in
impulsive (Cauchy or Laplacian) noise than the sign
detector. The sign detector, on the other hand, is
quite simple to implement, but does not perform
well in Gaussian noise.

We propose a nonparametric detector acquired by
modifying the classical sign detector. The detector
is quite simple to implement, performs better than
the sign detector in Gaussian noise, and performs
better than the rank and sign detectors for most
signal ranges in non-Gaussian noise.



II The Observation Model

Consider the binary hypothesis testing problem:
given an observation vector X, = (X1, Xa, ..., Xp),
a decision has to be made between a null hypothe-
sis i and an alternative hypothesis XK. The pair #
and X are defined as

H: X;
K X;

N;
N; + 5,

= i=1,2,---,n. (1)
In (1), n is the sample size, § > 0 is a constant
representing the signal, and N; are the independent
and identically distributed random variables rep-
resenting noise components, each with zero-mean
symunetric probability density function {(pdf) f.

In the usual fixed-sample-size detection scheme,
the detector is based on a critical function ¢(z,,),
a function of the specific realization z,, of X,,, and
takes one value in [0, 1] depending on the outcome of
a threshold comparison. The function ¢(z,) gives
the probability with which the alternative hypoth-
esis is to be accepted, and is defined by

{ I 3 if T(-{n) > Aﬂ,a:

Tn,a s if T(.@_n) = /\n,a;

0 yif T(2,) < Ana-
In (2), the test statistic T'(z,) is a function of the
observation appropriate for testing H versus K, and
the threshold A, o and the randomization parame-
ter v, o are constants chosen to achieve the desired
false alarm probability a.

¢(z,) (2)

III The Median-Shift Sign
Test Statistic

Now we consider the test statistic of the detector
proposed 1in this paper,

Trss(Xa) = i U(Xi+ V),

(3)
i=1
where
_ 1 ,ifz2>0,
Uz) = {0 ifz <0 4)

and V is the median-shift value, We call the detec-
tor based on the test statistic (3) the median-shift
sign (MSS) detector. The optimum median-shift
value V,, is so obtained as to make the detection
probability maximum once the sample size, false
alarm rate, signal strength, and noise statistics are
fixed. When V = Veop, the MSS detector will be
called the optimum MSS detector. The MSS detec-
tor with the median-shift value ¥ is written as the

MSS (V) detector: note that the MSS (0) detector
is the sign detector,

First we obtain the optimum median-shift value. .
The probability that the input data plus median-
shift value V is positive under the alternative hy-

pothesis is given by
A= [ He—(S+vV)d
= [ e s+ v
S+V
- [_ flz)dz
= F(§+V), (5)

where F is the cumulative distribution function of
f. Under the null hypothesis, § = 0 and we have

Po PliS:U

F(V).

(6)

We can now obtain the threshcld and randomiza-
tion parameter. The threshold X is the minimum
integer which satisfies

n

2

kzA41

where 1 < A < n and a is the false alarm rate. The
randomization parameter v is given by

n
@~ Tiax ( § ) PHO= P

(

where 0 < v < 1.

Then, using A and «, we can compute the detec-
tion probability. If the test statistic is greater than
the threshold, we choose the alternative hypothesis
with probability one. If the test statistic is equal
to the threshold, we choose the alternative hypoth-
esis with probability y. Otherwise, we reject the
alternative hypothesis with probability one. The
detection probability is therefore given by

(2)m0-rrr<a @

’ (8)

¥ o=
n
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The optimum median-shift value is then obtained
from

Pp

(%)ra-rr+ @

n

A )P;‘(I-Pl)""", (10)

Vop = arg m‘?.xPD, (11)
which is a function of the sample size n, false alarm
rate a, signal strength 5, and the noise pdf f.

Figure 1 shows a block diagram of the optimum
MSS detector.
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IV The Optimum Median-
Shift Value

In this section, we consider some properties of the
optimum median-shift value. Consider the Gaus-
sian, Laplacian, and Cauchy distributions, whose
pdfs are given by

1 -2
= o 12
fa(=) Tomaa® (12)
file) = goew™H, (13)
and
1 i
jelz) e (14
respectively [14], where
og = @, (15)
o = 3o (16)
and
oc = ;2;0'. (17)

Here o is the common deviation parameter intro-
duced to make fe(0) = fL(0) = fc(0) = £(0).

Figure 2 shows the median-shift value versus the
detection probability, when n = 100, o = 0.01,
S = 0.5, and o = 1.0. In this figure, the solid line
represents the Gaussian noise case, the dashed line
the Laplacian noise case, and the dotted line the
Cauchy noise case. Since the detection probabil-
ity is roughly symmetric about the optimum value,
the MSS (V) detector performs better than the sign
detector approximately when 2V, < V' < 0.

To show the effect of the sample size variation on
the optimum median-shift value, we plotted some
results in Figure 3, when @ =001 and ¢ = 1.0. In
this figure, the solid line represents the case n = 20,
the dashed line the case n = 50, and the dotted line
the case n = 100. From the results, we can say
the following properties. As the signal strength in-
creases, the absolute value of the optimum median-
shift value increases stairwise. In Gaussian noise,
as the sample size increases, the absolute value of
the optimum median-shift value decreases. In non-
Gaussian noise, the optimum median-shift value is
rather insensitive to the sample size variation. The
height AV of the stair strongly depends on the sam-
ple size and can be approximately calculated as, in
the weak signal case,

1 =

E{Tmss|H and V = V4 } (18)

"

~E{Tumss|H and V = V3}
nPo; —nPyy

i

~ n{0.5 4+ f(0)Vi) — n(0.5+ f(0)Va)
= nf(Q)AV,
1

where V; = Vo + AV,

Next, to show the effect of the false alarm rate
variation on the optimum median-shift value, we
plotted some results in Figure 4, when n = 50 and
¢ = 1.0. In this figure, the solid line is the case
a = 0.001, the dashed line the case a = 0.008,
and the dotted line the case a = 0.010. From the
results, we can say that the optimum median-shift
value is insensitive to the false alarm rate variation
in non-Gaussian noise.

V Finite Sample-Size Perfor-
mance

In general, there are two methods in measuring
the performance of detectors. One is the finite
sample-size performance analysis, which is the ex-
act analysis. The other is the asymptotic perfor-
mance analysis based on the asymptotic relative ef-
ficiency (ARE) which is used when the sample size
is very large. In this paper, we use the Monte-Carlo
method for the simulation of finite sample-size per-~
formance comparisons.

1 Detection of Signals in Noise of
Known Distribution

In this section, we consider the problem of detect-
ing a dc signal when we know the pdf of noise. The
detectors compared in the simulations are the lin-
ear, sign, Wilcoxon, and MSS detectors, whose test
statistics are

X)) = 2% (20)
oK) = DU, (1)
Tw(X,) = Y ZUX), (22)
i=1
(23)
where Z; is the rank of X; in the set
{i1Xa], 1 Xz, - -+, {Xa[}, and
Tuss(Xa) = i U(X:+V), (24)

i=1



respectively.

In Figures 5-7, we show the detection probabili-
ties as a function of the signal strength in Gaussian,
Laplacian, and Cauchy noise, respectively, when
n =50, a = 0.01, and o = 1.0. In these figures, the
solid line represents the MSS (V,,) detector, the
circle the MSS (—0.1) detector, the star the MSS
{~0.3) detector, the dotted line the classical sign
detector, the dashed line the linear detector, and
the dashdot line the Wilcoxon detector.

In the Gaussian noise case, the linear detector is
optimum and the Wilcoxon detector is nearly op-
timum. The MSS (V,,) detector slightly performs
better than the sign detector: the MSS detectors
with constant median-shift values also slightly per-
form better than the sign detector, but slightly per-
form worse than the MSS (V,,) detector.

In the Laplacian noise case, the MSS (Vop) de-
tector has the best performance among the detec-
tors compared. The sign and Wilcoxon detectors
have almost the same performance: when the sig-
nal is weak, the sign detector slightly performs bet-
ter than the Wilcoxon detector. When the signal is
strong, on the other hand, the sign detector slightly
performs worse than the Wilcoxon detector. The
linear detector has the worst performance among
the detectors compared. An interesting fact is that
the MSS detectors with constant median-shift val-
ues have quite good performance. The MSS (-0.1)
detector is nearly equal to the MSS {Vop) detector
when the signal is weak. When the signal is strong,
it performs worse than the MSS (V,,) detector, but
still performs better than the sign and Wilcoxon de-
tectors. The MSS (—0.3) detector is nearly equal to
the MSS (V,,) detector when the signal is strong.
When the signal is weak, it slightly performs worse
than the sign and Wilcoxon detectors, but still per-
forms better than the linear detector.

In the Cauchy noise case, observations similar to
those made in the Laplacian noise can be made,
except that the sign detector performs better than
the Wilcoxon detector, since the Cauchy noise is
more impulsive than the Laplacian noise.

2 Detection of Signals in Noise of
Nearly Unknown Distribution

In this section, we consider the problem of detecting
a dc signal in nearly unknown noise: all we know is
that the noise pdf f satisfies f(z) = f{—=r) and

/ w fz)da

is fixed for some constant z. The false alarm rate
is constant for the MSS (V = z) detector: that is,

F(z)

(25)
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the MSS (V = z) detector is a nonparametric or
constant false alarm rate (CFAR) detector.

Figures 8-10 show the detection probability as a
function of the signal strength in Gaussian, Lapla- -
cian, and Cauchy noise, respectively, when n = 50,
a = 001, z = -0.1, and F(-0.1) = 0.46017. In
these figures, the circle represents the MSS (~0.1)
detector, the star the MSS (—0.3} detector, the dot-
ted line the classical sign detector, the dashdot line
the Wilcoxon detector, and the dashed the linear
detector.

In Gaussian noise, the linear detector is optimum
and the Wilcoxon detector is nearly optimum. The
sign detector performs worse than the optimum de-
tector. The MSS (~0.1} and MSS (~0.3) detectors
slightly perform better than the sign detector.

In Laplacian noise, the MSS (—0.1) and MSS
(—0.3) detectors perform better than the sign and
Wilcoxon detectors for most signal ranges. When
the signal is weak, the MSS (~0.1) and MSS {~0.3)
detectors slightly perform worse than the sign de-
tector, because the sign detector is the locally op-
timum (LO) detector for the weak signal. For the
linear detector, we assumed that the noise pdf is
known so that the linear detector can satisfy the
given constant false alarm rate.

In Cauchy noise, the MSS (0.1} and MSS
(—0.3) detectors perform better than the sign and
Wilcoxon detectors for most signal ranges. For the
linear detector, we assumed that the noise pdf is
known so that the linear detector can satisfy the
given constant false alarm rate. When the signal is
not strong, the detection probabilities of the linear
detector is almost equal to the false alarm rate.

VI Conclusion

In this paper, we proposed a new detector based on
the median-shift sign. This detector was a modifica-
tion and an extension of the classical sign detector.
In Section IV, we showed some properties of th
optimum median-shift value. '

In Section V, we analyzed the problem of detect-
ng a dc signal in known noise. The MSS detec-
tor with the optimum median-shift value, i. e., the
optimum MSS detector, performed better than the
sign detector in Gaussian noise: it had the best per-
formance among the detectors compared in Lapla-
cian and Cauchy noise. It was shown that the MSS
detectors with constant median-shift values were
nearly equal to the optimum MSS detector.

Next, we analyzed the problem of detecting a
dc signal when only partial information was avail-
able on the noise. In this case, the MSS detector
with the constant median-shift value was used. The



MSS detector was almost equal to the sign detec-
tor in Gaussian noise: it performed better than the
sign and Wilcoxon detectors for most signal ranges
in Laplacian and Cauchy noise. Because the false
alarm rate of the MSS detector is constant, the MSS
detector is a ronparametric detector.

It is noteworthy that the MSS detectors with
small constant median-shift values have simple con-
struction and perform better than the sign and
Wilcoxon detectors for most signal ranges in non-
Gaussian noise.

VII Acknowledgements

This research was supported in party by the Min-
istry of Information and Communication under a
Grant from the University Basic Research Fund,
for which the authors would like to express their
thanks.

References

[11 S. A. Kassam, Signal Detection in Non-
Guaussian Noise, Springer-Verlag, New York, NY,
1988.

[2] H. V. Poor, An Introduction to Signal Detection

and Estimation, 2nd Ed., Springer-Verlag, New
York, NY, 1994,

[3] 3. B. Thomas, ”Nonparametric detection”,
Proc. IEEE, vol. b8, pp. 623-631, May 1970.

[4] E. L. Lehmann and H. J. M. Dédbrera, Nonpara-
metrics, Holden-Day, San Fransisco, CA, 1975.

[5] P. Stoica, K. M. Wong, and Q. Wy, ”On a non-
pametric detection method for array signal pro-
cessing in correlated noise fields”, IEEE Trans.
Signal Processing, vol. 44, pp. 1030-1032, April
1996.

[6] J. L. Sanz-Gonzalez and A. R. Figueiras-Vidal,
"A suboptimum rank test for nonparametric
radar detection”, IEEE Trans. Aerospace, Elec-
tronic Systems, vol. 22, pp. 670-679, November
1986.

[7] J. L. Sanz-Gonzélez, "Nonparametric rank de-
tectors on quantized radar video signals”, IEEE
Trans. Aerospace, Electronic Systems, vol. 25,
pp. 969-975, November 1990.

{8] S. A. Kassam and J. B. Thomas, " Generaliza-
tions of the sign detector based on conditional
tests”, IEEE Trans. Comm., vol. 24, pp. 481-487,
May 1976.

13

ability when n

[9] E. K. Al-Hussaini, " Trimmed generalized sign
and modified median detectors for multiple tar-
get situations”, IEEE Trans. Aerospace, Elec-
tronic Systems, vol. 15, pp. 573-678, July 1979.

[10] J. M. Morris, "Optimal probability-of-error
thresholds and performance for two versions of
the sign detector”, JEEE Trans. Comm., vol. 39,
pp. 1726-1728, December 1991.

{11] I. Song and S. A. Kassam, ”Locally optimum
rank detection of correlated random signals in ad-
ditive noise”, IEEE Trans. Inform. Theory, vol.
38, pp. 1311-1322, July 1992.

[12] S. Y. Kim, I. Song, J. C. Son, and S. Kim,
» Performance characteristics of the fuzzy sign de-
tector” , Fuzzy Sets, Systems, vol. 74, pp. 195-205,
Septernber 1995, '

[13] J. Bae, Y. Ryu, T. Chang, 1. Song, and H.
M. Kim, ” Nonparametric detection of known and
random signals based on zero-crossings.” Signal
Processing, vol. 52, pp. 75-82, July 1696.

[14] V. K. Rohatgi, An Introduction to Probability
Theory and Mathematical Statistics, John Wiley
& Sons, New York, NY, 1976.

S w3

v,
- llT
[ Tatsa

Look-Up

LEE |

Figure 1: A block diagram of the optimum MSS
detector

Figure 2: Median-shift value versus detection prob-
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Figure 6: Detection probabilities in Laplacian noise,
when n» = 50, a = 0.01, and o = 1.0 (known noise
case)
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Figure 9: Detection probabilities in Laplacian noise,
when n = 50, & = 0.01, 2 = ~0.1, and F(~0.1) =
0.46017 (nearly unknown noise case)

Figure 7: Detection probabilities in Cauchy noise,
when n = 50, « = 0.01, and ¢ = 1.0 (known noise
case)
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Figure 8: Detection probabilities in Gaussian notse,
when n = 50, a = 0.01, z = —0.1, and F(-01) =
0.46017 (nearly unknown noise case)
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