• Title/Summary/Keyword: solitons

Search Result 108, Processing Time 0.022 seconds

Propagation Dynamics of Optical Vortices with Anisotropic Phase Profiles (비균일 위상 형태를 갖는 광보텍스의 진행 특성)

  • Kim Gwang-Hun;Lee Hae-Jun;Kim Jong-Uk;Seok Hui-Yong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.110-111
    • /
    • 2002
  • Controllable waveguide of optical vortex solitons is possible by using the rotational characteristics of optical vortices, while the relative phase difference across the soliton profiles can be used to steer the waveguide direction in case of two-dimensional dark solitons. It is important to understand in detail what sources contribute to the rotation of optical vortices to apply optical vortex solitons to the optical switchyard. (omitted)

  • PDF

SOME DOUBLY-WARPED PRODUCT GRADIENT RICCI SOLITONS

  • Kim, Jongsu
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.625-635
    • /
    • 2016
  • In this paper, we study certain doubly-warped products which admit gradient Ricci solitons with harmonic Weyl curvature and non-constant soliton function. The metric is of the form $g=dx^2_1+p(x_1)^2dx^2_2+h(x_1)^2\;{\tilde{g}}$ on ${\mathbb{R}}^2{\times}N$, where $x_1$, $x_2$ are the local coordinates on ${\mathbb{R}}^2$ and ${\tilde{g}}$ is an Einstein metric on the manifold N. We obtained a full description of all the possible local gradient Ricci solitons.

GRADIENT ALMOST RICCI SOLITONS WITH VANISHING CONDITIONS ON WEYL TENSOR AND BACH TENSOR

  • Co, Jinseok;Hwang, Seungsu
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.539-552
    • /
    • 2020
  • In this paper we consider gradient almost Ricci solitons with weak conditions on Weyl and Bach tensors. We show that a gradient almost Ricci soliton has harmonic Weyl curvature if it has fourth order divergence-free Weyl tensor, or it has divergence-free Bach tensor. Furthermore, if its Weyl tensor is radially flat, we prove such a gradient almost Ricci soliton is locally a warped product with Einstein fibers. Finally, we prove a rigidity result on compact gradient almost Ricci solitons satisfying an integral condition.

ALGEBRAIC RICCI SOLITONS IN THE FINSLERIAN CASE

  • Jiao, Guocheng;Yan, Zaili
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.853-863
    • /
    • 2021
  • In this paper, we study algebraic Ricci solitons in the Finslerian case. We show that any simply connected Finslerian algebraic Ricci soliton is a Finslerian Ricci soliton. Furthermore, we study Randers algebraic Ricci solitons. It turns out that a shrinking, steady, or expanding Randers algebraic Ricci soliton with vanishing S-curvature is Einstein, locally Minkowskian, or Riemannian, respectively.

*-Ricci Soliton on (κ < 0, µ)-almost Cosymplectic Manifolds

  • Rani, Savita;Gupta, Ram Shankar
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.333-345
    • /
    • 2022
  • We study *-Ricci solitons on non-cosymplectic (κ, µ)-acs (almost cosymplectic) manifolds M. We find *-solitons that are steady, and such that both the scalar curvature and the divergence of the potential field is negative. Further, we study concurrent, concircular, torse forming and torqued vector fields on M admitting Ricci and *-Ricci solitons. Also, we provide some examples.

CERTAIN RESULTS ON THREE-DIMENSIONAL f-KENMOTSU MANIFOLDS WITH CONFORMAL RICCI SOLITONS

  • Mandal, Tarak
    • Korean Journal of Mathematics
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In the present paper, we have studied conformal Ricci solitons on f-Kenmotsu manifolds of dimension three. Also we have studied 𝜙-Ricci symmetry, 𝜂-parallel Ricci tensor, cyclic parallel Ricci tensor and second order parallel tensor in f-Kenmotsu manifolds of dimension three admitting conformal Ricci solitons. Finally, we give an example.

Some Triviality Characterizations on Gradient Almost Yamabe Solitons

  • Uday Chand De;Puja Sarkar;Mampi Howlader
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.639-645
    • /
    • 2023
  • An almost Yamabe soliton is a generalization of the Yamabe soliton. In this article, we deduce some results regarding almost gradient Yamabe solitons. More specifically, we show that a compact almost gradient Yamabe soliton having non-negative Ricci curvature is trivial. Again, we prove that an almost gradient Yamabe soliton with a non-negative potential function and scalar curvature bound admitting an integral condition is trivial. Moreover, we give a characterization of a compact almost gradient Yamabe solitons.

GENERALIZED 𝜂-RICCI SOLITONS ON QUASI-SASAKIAN 3-MANIFOLDS ASSOCIATED TO THE SCHOUTEN-VAN KAMPEN CONNECTION

  • Shahroud Azami
    • Honam Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.655-667
    • /
    • 2023
  • In this paper, we study quasi-Sasakian 3-dimensional manifolds admitting generalized 𝜂-Ricci solitons associated to the Schouten-van Kampen connection. We give an example of generalized 𝜂-Ricci solitons on a quasi-Sasakian 3-dimensional manifold with respect to the Schouten-van Kampen connection to prove our results.