Acknowledgement
The authors are thankful to the editor and anonymous referees for their valuable suggestions in the improvement of the paper.
References
- A. M. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2016), no. 2, 489-496. https://doi.org/10.2298/FIL1602489B
- D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967), 331-345. http://projecteuclid.org/euclid.jdg/1214428097
- D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.
- D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2002. https://doi.org/10.1007/978-1-4757-3604-5
- C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 361-368.
- J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. (2) 61 (2009), no. 2, 205-212. https://doi.org/10.2748/tmj/1245849443
- U. C. De and P. Majhi, ϕ-semisymmetric generalized Sasakian space-forms, Arab J. Math. Sci. 21 (2015), no. 2, 170-178. https://doi.org/10.1016/j.ajmsc.2015.01.002
- U. C. De and A. K. Mondal, 3-dimensional quasi-Sasakian manifolds and Ricci solitons, SUT J. Math. 48 (2012), no. 1, 71-81.
- U. C. De and A. Sarkar, On three-dimensional quasi-Sasakian manifolds, SUT J. Math. 45 (2009), no. 1, 59-71.
- U. C. De, A. Yildiz, M. Turan, and B. E. Acet, 3-dimensional quasi-Sasakian manifolds with semi-symmetric non-metric connection, Hacet. J. Math. Stat. 41 (2012), no. 1, 127-137.
- U. K. Gautam, A. Haseeb, and R. Prasad, Some results on projective curvature tensor in Sasakian manifolds, Commun. Korean Math. Soc. 34 (2019), no. 3, 881-896. https://doi.org/10.4134/CKMS.c180235
- S. Ghosh, η-Ricci solitons on quasi-Sasakian manifolds, An. Univ. Vest Timi,s. Ser. Mat.-Inform. 56 (2018), no. 1, 73-85. https://doi.org/10.2478/awutm-2018-0006
- J. C. Gonzalez and D. Chinea, Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Amer. Math. Soc. 105 (1989), no. 1, 173-184. https://doi.org/10.2307/2046753
- A. Haseeb and R. Prasad, η-Ricci solitons on ⲉ-LP-Sasakian manifolds with a quartersymmetric metric connection, Honam Math. J. 41 (2019), no. 3, 539-558. https://doi.org/10.5831/hmj.2019.41.3.539
- A. Haseeb and R. Prasad, η-Ricci solitons in Lorentzian α-Sasakian manifolds, Facta Universitatis (NIS), Ser. Math. Inform. 35 (2020), 713-725.
- S. Kanemaki, Quasi-Sasakian manifolds, Tohoku Math. J. 29 (1977), no. 2, 227-233. https://doi.org/10.2748/tmj/1178240654
- S. Kanemaki, On quasi-Sasakian manifolds, in Differential geometry (Warsaw, 1979), 95-125, Banach Center Publ., 12, PWN, Warsaw, 1984.
- P. Majhi, U. C. De, and D. Kar, η-Ricci solitons on Sasakian 3-manifolds, An. Univ. Vest Timis. Ser. Mat.-Inform. 55 (2017), no. 2, 143-156. https://doi.org/10.1515/awutm2017-0019
- Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), no. 1, 41-50. https://doi.org/10.4064/ap-47-1-41-50
- Z. Olszak, On three-dimensional conformally flat quasi-Sasakian manifolds, Period. Math. Hungar. 33 (1996), no. 2, 105-113. https://doi.org/10.1007/BF02093508
- D. G. Prakasha and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom. 108 (2017), no. 2, 383-392. https://doi.org/10.1007/s00022-016-0345-z
- M. Turan, C. Yetim, and S. K. Chaubey, On quasi-Sasakian 3-manifolds admitting η-Ricci solitons, Filomat 33 (2019), no. 15, 4923-4930. https://doi.org/10.2298/fil1915923t
- A. G. Walker, On Ruse's spaces of recurrent curvature, Proc. London Math. Soc. (2) 52 (1950), 36-64. https://doi.org/10.1112/plms/s2-52.1.36
- K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.