DOI QR코드

DOI QR Code

ON GENERIC SUBMANIFOLDS OF LP-SASAKIAN MANIFOLDS WITH CONCURRENT VECTOR FIELDS

  • Ghosh, Sujoy (Department of Mathematics University of Kalyani) ;
  • Jun, Jae-Bok (Department of Mathematics College of Natural Science Kookmin University) ;
  • Sarkar, Avijit (Department of Mathematics University of Kalyani)
  • Received : 2020.06.04
  • Accepted : 2020.07.30
  • Published : 2021.04.30

Abstract

The object of the present paper is to deduce some important results on generic submanifolds and also generic product of LP-Sasakian manifolds with concurrent vector fields. Also, we provide a necessary and sufficient condition for which the invariant distribution D and anti-invariant distribution D of M are Einstein. Also, we deduce an interesting necessary and sufficient condition for submanifolds of LP-Sasakian manifolds to be totally umbilical submanifolds. Especially we deal with the generic submanifolds admitting a Ricci soliton in LP-Sasakian manifolds endowed with concurrent vector fields.

Keywords

References

  1. P. Alegre, Semi-invariant submanifolds of Lorentzian Sasakian manifolds, Demonstratio Math. 44 (2011), no. 2, 391-406. https://doi.org/10.1515/dema-2013-0307
  2. C. S. Bagewadi and G. Ingalahalli, Ricci solitons in Lorentzian α-Sasakian manifolds, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 28 (2012), no. 1, 59-68.
  3. A. Bejancu, CR submanifolds of a Kaehler manifold. I, Proc. Amer. Math. Soc. 69 (1978), no. 1, 135-142. https://doi.org/10.2307/2043207
  4. A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An. Stiint. Univ. "Al. I. Cuza" Iasi Sect. I a Mat. (N.S.) 27 (1981), no. 1, 163-170.
  5. B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, Inc., New York, 1973.
  6. B.-Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc. 52 (2015), no. 5, 1535-1547. https://doi.org/10.4134/BKMS.2015.52.5.1535
  7. B.-Y. Chen and S. Deshmukh, Ricci solitons and concurrent vector fields, Balkan J. Geom. Appl. 20 (2015), no. 1, 14-25.
  8. B.-Y. Chen and S. W. Wei, Riemannian submanifolds with concircular canonical field, Bull. Korean Math. Soc. 56 (2019), no. 6, 1525-1537. https://doi.org/10.4134/BKMS.b181232
  9. T. Friedrich and S. Ivanov, Almost contact manifolds, connections with torsion, and parallel spinors, J. Reine Angew. Math. 559 (2003), 217-236. https://doi.org/10.1515/crll.2003.050
  10. A. Ghosh, Certain contact metrics as Ricci almost solitons, Results Math. 65 (2014), no. 1-2, 81-94. https://doi.org/10.1007/s00025-013-0331-9
  11. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922 https://doi.org/10.4310/jdg/1214436922
  12. M. Kobayashi, Semi-invariant submanifolds of a certain class of almost contact manifolds, Tensor (N.S.) 43 (1986), no. 1, 28-36.
  13. D. L. K. Kumar, H. G. Nagaraja, and D. Kumari, Concircular curvature tensor of Kenmotsu manifolds admitting generalized Tanaka-webster connection, J. Math. Comput. Sci. 94 (2019), 447-462.
  14. P. Majhi and G. Ghosh, Concircular vectors field in (k, µ)-contact metric manifolds, Int. Electron. J. Geom. 11 (2018), no. 1, 52-56. https://doi.org/10.1049/iet-pel.2017.0202
  15. K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
  16. K. Matsumoto and I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor (N.S.) 47 (1988), no. 2, 189-197.
  17. M. E. A. Mekki and A. M. Cherif, Generalised Ricci solitons on Sasakian manifolds, Kyungpook Math. J. 57 (2017), no. 4, 677-682. https://doi.org/10.5666/KMJ.2017.57.4.677
  18. H. G. Nagaraja and K. Venu, Ricci solitons in Kenmotsu manifolds, J. Inform. Math. Sci. 8 (2016), 29-36.
  19. B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
  20. A. Sarkar and M. Sen, On invariant submanifolds of LP-Sasakian manifolds, Extracta Math. 27 (2012), no. 1, 145-154.
  21. S. Sevinc, G. A. Sekerci, and A. C. Coken, Some results about concircular and concurrent vector fields on pseudo-Kaehler manifolds, J. Phys. Conferrence Series 766 (2016), 1-6.
  22. R. Sharma and A. Ghosh, Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group, Int. J. Geom. Methods Mod. Phys. 8 (2011), no. 1, 149-154. https://doi.org/10.1142/S021988781100504X
  23. K. Yano and B. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. Sem. Rep. 23 (1971), 343-350. http://projecteuclid.org/euclid.kmj/1138846372 https://doi.org/10.2996/kmj/1138846372
  24. K. Yano and M. Kon, Generic submanifolds of Sasakian manifolds, Kodai Math. J. 3 (1980), no. 2, 163-196. http://projecteuclid.org/euclid.kmj/1138036191 https://doi.org/10.2996/kmj/1138036191
  25. H. Yoldas, Eken Meric, and E. Yasar, On generic submanifold of Sasakian manifold with concurrent vector field, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68 (2019), no. 2, 1983-1994. https://doi.org/10.31801/cfsuasmas.445788
  26. G. J. Zhang and J. G. Wei, Invariant submanifolds and modes of non-linear autonomous systems, Appl. Math. Mech. (English Ed.) 19 (1998), no. 7, 687-693; translated from Appl. Math. Mech. 19 (1998), no. 7, 641-647. https://doi.org/10.1007/BF02452377