References
- P. Alegre, Semi-invariant submanifolds of Lorentzian Sasakian manifolds, Demonstratio Math. 44 (2011), no. 2, 391-406. https://doi.org/10.1515/dema-2013-0307
- C. S. Bagewadi and G. Ingalahalli, Ricci solitons in Lorentzian α-Sasakian manifolds, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 28 (2012), no. 1, 59-68.
- A. Bejancu, CR submanifolds of a Kaehler manifold. I, Proc. Amer. Math. Soc. 69 (1978), no. 1, 135-142. https://doi.org/10.2307/2043207
- A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An. Stiint. Univ. "Al. I. Cuza" Iasi Sect. I a Mat. (N.S.) 27 (1981), no. 1, 163-170.
- B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, Inc., New York, 1973.
- B.-Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc. 52 (2015), no. 5, 1535-1547. https://doi.org/10.4134/BKMS.2015.52.5.1535
- B.-Y. Chen and S. Deshmukh, Ricci solitons and concurrent vector fields, Balkan J. Geom. Appl. 20 (2015), no. 1, 14-25.
- B.-Y. Chen and S. W. Wei, Riemannian submanifolds with concircular canonical field, Bull. Korean Math. Soc. 56 (2019), no. 6, 1525-1537. https://doi.org/10.4134/BKMS.b181232
- T. Friedrich and S. Ivanov, Almost contact manifolds, connections with torsion, and parallel spinors, J. Reine Angew. Math. 559 (2003), 217-236. https://doi.org/10.1515/crll.2003.050
- A. Ghosh, Certain contact metrics as Ricci almost solitons, Results Math. 65 (2014), no. 1-2, 81-94. https://doi.org/10.1007/s00025-013-0331-9
- R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922 https://doi.org/10.4310/jdg/1214436922
- M. Kobayashi, Semi-invariant submanifolds of a certain class of almost contact manifolds, Tensor (N.S.) 43 (1986), no. 1, 28-36.
- D. L. K. Kumar, H. G. Nagaraja, and D. Kumari, Concircular curvature tensor of Kenmotsu manifolds admitting generalized Tanaka-webster connection, J. Math. Comput. Sci. 94 (2019), 447-462.
- P. Majhi and G. Ghosh, Concircular vectors field in (k, µ)-contact metric manifolds, Int. Electron. J. Geom. 11 (2018), no. 1, 52-56. https://doi.org/10.1049/iet-pel.2017.0202
- K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
- K. Matsumoto and I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor (N.S.) 47 (1988), no. 2, 189-197.
- M. E. A. Mekki and A. M. Cherif, Generalised Ricci solitons on Sasakian manifolds, Kyungpook Math. J. 57 (2017), no. 4, 677-682. https://doi.org/10.5666/KMJ.2017.57.4.677
- H. G. Nagaraja and K. Venu, Ricci solitons in Kenmotsu manifolds, J. Inform. Math. Sci. 8 (2016), 29-36.
- B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
- A. Sarkar and M. Sen, On invariant submanifolds of LP-Sasakian manifolds, Extracta Math. 27 (2012), no. 1, 145-154.
- S. Sevinc, G. A. Sekerci, and A. C. Coken, Some results about concircular and concurrent vector fields on pseudo-Kaehler manifolds, J. Phys. Conferrence Series 766 (2016), 1-6.
- R. Sharma and A. Ghosh, Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group, Int. J. Geom. Methods Mod. Phys. 8 (2011), no. 1, 149-154. https://doi.org/10.1142/S021988781100504X
- K. Yano and B. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. Sem. Rep. 23 (1971), 343-350. http://projecteuclid.org/euclid.kmj/1138846372 https://doi.org/10.2996/kmj/1138846372
- K. Yano and M. Kon, Generic submanifolds of Sasakian manifolds, Kodai Math. J. 3 (1980), no. 2, 163-196. http://projecteuclid.org/euclid.kmj/1138036191 https://doi.org/10.2996/kmj/1138036191
- H. Yoldas, Eken Meric, and E. Yasar, On generic submanifold of Sasakian manifold with concurrent vector field, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68 (2019), no. 2, 1983-1994. https://doi.org/10.31801/cfsuasmas.445788
- G. J. Zhang and J. G. Wei, Invariant submanifolds and modes of non-linear autonomous systems, Appl. Math. Mech. (English Ed.) 19 (1998), no. 7, 687-693; translated from Appl. Math. Mech. 19 (1998), no. 7, 641-647. https://doi.org/10.1007/BF02452377