References
- M. R. Abdollahpour, R. Aghayari, and M. Th. Rassias, Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl. 437 (2016), no. 1, 605-612. https://doi.org/10.1016/j.jmaa.2016.01.024
- M. R. Abdollahpour and M. Th. Rassias, Hyers-Ulam stability of hypergeometric differential equations, Aequationes Math. 93 (2019), no. 4, 691-698. https://doi.org/10.1007/s00010-018-0602-3
- J. Aczel and J. Dhombres, Functional equations in several variables, Encyclopedia of Mathematics and its Applications, 31, Cambridge University Press, Cambridge, 1989. https://doi.org/10.1017/CBO9781139086578
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237. https://doi.org/10.1090/S0002-9904-1951-09511-7
- J. Brzdek, Remarks on hyperstability of the Cauchy functional equation, Aequationes Math. 86 (2013), no. 3, 255-267. https://doi.org/10.1007/s00010-012-0168-4
- J. Brzdek, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar. 141 (2013), no. 1-2, 58-67. https://doi.org/10.1007/s10474-013-0302-3
- J. Brzdek, A hyperstability result for the Cauchy equation, Bull. Aust. Math. Soc. 89 (2014), no. 1, 33-40. https://doi.org/10.1017/S0004972713000683
- J. Brzdek, Remarks on stability of some inhomogeneous functional equations, Aequationes Math. 89 (2015), no. 1, 83-96. https://doi.org/10.1007/s00010-014-0274-6
- J. Brzdek and K. Cieplinski, Hyperstability and superstability, Abstr. Appl. Anal. 2013 (2013), Art. ID 401756, 13 pp. https://doi.org/10.1155/2013/401756
- J. Brzdek and K. Cieplinski, On a fixed point theorem in 2-Banach spaces and some of its applications, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 2, 377-390. https://doi.org/10.1016/S0252-9602(18)30755-0
- K. Cieplinski and T. Z. Xu, Approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces, Carpathian J. Math. 29 (2013), no. 2, 159-166. https://doi.org/10.37193/CJM.2013.02.14
- Y. J. Cho, P. C. S. Lin, S. S. Kim, and A. Misiak, Theory of 2-Inner Product Spaces, Nova Science Publishers, Inc., Huntington, NY, 2001.
- St. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
- St. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. https://doi.org/10.1142/9789812778116
- Iz. EL-Fassi, Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces, J. Math. Anal. Appl. 455 (2017), no. 2, 2001-2013. https://doi.org/10.1016/j.jmaa.2017.06.078
- Iz. EL-Fassi, A new type of approximation for the radical quintic functional equation in non-Archimedean (2, β)-Banach spaces, J. Math. Anal. Appl. 457 (2018), no. 1, 322-335. https://doi.org/10.1016/j.jmaa.2017.08.015
- Iz. EL-Fassi and S. Kabbaj, On the hyperstability of a Cauchy-Jensen type functional equation in Banach spaces, Proyecciones 34 (2015), no. 4, 359-375. https://doi.org/10.4067/S0716-09172015000400005
- Iz. EL-Fassi, S. Kabbaj, and A. Charifi, Hyperstability of Cauchy-Jensen functional equations, Indag. Math. (N.S.) 27 (2016), no. 3, 855-867. https://doi.org/10.1016/j.indag.2016.04.001
- R. W. Freese and Y. J. Cho, Geometry of Linear 2-Normed Spaces, Nova Science Publishers, Inc., Hauppauge, NY, 2001.
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. https://doi.org/10.1155/S016117129100056X
- S. Gahler, Lineare 2-normierte Raume, Math. Nachr. 28 (1964), 1-43. https://doi.org/10.1002/mana.19640280102
- S. Gahler, Uber 2-Banach-Raume, Math. Nachr. 42 (1969), 335-347. https://doi.org/10.1002/mana.19690420414
- E. Gselmann, Hyperstability of a functional equation, Acta Math. Hungar. 124 (2009), no. 1-2, 179-188. https://doi.org/10.1007/s10474-009-8174-2
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, G. Isac, and T. M. Rassias, Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, 34, Birkhauser Boston, Inc., Boston, MA, 1998. https://doi.org/10.1007/978-1-4612-1790-9
- D. H. Hyers and T. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153. https://doi.org/10.1007/BF01830975
- S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Optimization and Its Applications, 48, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-9637-4
- S.-M. Jung, D. Popa, and M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim. 59 (2014), no. 1, 165-171. https://doi.org/10.1007/s10898-013-0083-9
- S.-M. Jung and M. Th. Rassias, A linear functional equation of third order associated with the Fibonacci numbers, Abstr. Appl. Anal. 2014 (2014), Art. ID 137468, 7 pp. https://doi.org/10.1155/2014/137468
- Pl. Kannappan, Functional equations and inequalities with applications, Springer Monographs in Mathematics, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-89492-8
- H. Khodaei, M. Eshaghi Gordji, S. S. Kim, and Y. J. Cho, Approximation of radical functional equations related to quadratic and quartic mappings, J. Math. Anal. Appl. 395 (2012), no. 1, 284-297. https://doi.org/10.1016/j.jmaa.2012.04.086
- Y.-H. Lee, S.-M. Jung, and M. Th. Rassias, On an n-dimensional mixed type additive and quadratic functional equation, Appl. Math. Comput. 228 (2014), 13-16. https://doi.org/10.1016/j.amc.2013.11.091
- Y.-H. Lee, S.-M. Jung, and M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal. 12 (2018), no. 1, 43-61. https://doi.org/10.7153/jmi-2018-12-04
- G. Maksa and Z. Pales, Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyh'azi. (N.S.) 17 (2001), no. 2, 107-112.
- C. Mortici, M. Th. Rassias, and S.-M. Jung, On the stability of a functional equation associated with the Fibonacci numbers, Abstr. Appl. Anal. 2014 (2014), Art. ID 546046, 6 pp. https://doi.org/10.1155/2014/546046
- W.-G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 (2011), no. 1, 193-202. https://doi.org/10.1016/j.jmaa.2010.10.004
- C. Park and M. Th. Rassias, Additive functional equations and partial multipliers in C*-algebras, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (2019), no. 3, 2261-2275. https://doi.org/10.1007/s13398-018-0612-y
- T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.2307/2042795
- T. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), no. 1, 106-113. https://doi.org/10.1016/0022-247X(91)90270-A
- T. M. Rassias, Functional equations and inequalities, Mathematics and its Applications, 518, Kluwer Academic Publishers, Dordrecht, 2000. https://doi.org/10.1007/978-94-011-4341-7
- P. K. Sahoo and P. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, FL, 2011.
- W. Smajdor, Note on a Jensen type functional equation, Publ. Math. Debrecen 63 (2003), no. 4, 703-714.
- T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), no. 2, 604-616. https://doi.org/10.1016/S0022-247X(02)00181-6
- S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York, 1960.
- J. Wang, Some further generalizations of the Hyers-Ulam-Rassias stability of functional equations, J. Math. Anal. Appl. 263 (2001), no. 2, 406-423. https://doi.org/10.1006/jmaa.2001.7626
- A. G. White, Jr., 2-Banach spaces, Math. Nachr. 42 (1969), 43-60. https://doi.org/10.1002/mana.19690420104