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Abstract. We study ∗-Ricci solitons on non-cosymplectic (κ, µ)-acs (almost cosymplec-

tic) manifolds M . We find ∗-solitons that are steady, and such that both the scalar

curvature and the divergence of the potential field is negative. Further, we study con-

current, concircular, torse forming and torqued vector fields on M admitting Ricci and

∗-Ricci solitons. Also, we provide some examples.

1. Introduction

In the framework of Riemannian geometry, Blair et al. [2] introduced a (κ, µ)-
space in contact geometry as contact manifoldM whose curvature tensor R satisfies

R(U,W )ξ = κ(η(W )U − η(U)W ) + µ(η(W )hU − η(U)hW ),(1.1)

for any U and W ∈ TM and for h a symmetric operator given by h = 1

2
Lξψ, where

ψ is a (1, 1) tensor field and κ, µ are constants. If κ = 1 and h = 0, then (κ, µ)-spaces
reduces to the Sasakian manifolds. Non-Sasakian manifolds have proven to be more
interesting in this context. The unit tangent sphere bundle of a flat Riemannian
manifold with the usual contact metric structure is an example of non-Sasakian
spaces of this type. Moreover, this type of spaces is invariant under D-homothetic
transformations. These factors drive the study of this type of manifold. Boeckx
proved that a non-Sasakian contact metric manifold satisfying (1.1) is completely
determined locally by its dimension for the constant values of κ, µ [3].

If κ, µ are functions, then a contact metric manifold satisfying (1.1) is called
a generalized (κ, µ)-space [16]. Koufogiorgos et al. introduced a (κ, µ, ν)-contact
metric manifold which satisfies [17]

R(U,W )ξ = κ(η(W )U − η(U)W ) + µ(η(W )hU − η(U)hW )(1.2)

+ν(η(W )ψhU − η(U)ψhW ),
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for smooth functions κ, µ, ν on M2n+1 and they proved that it reduces to a (κ, µ)-
manifold in dimension 2n+ 1 ≥ 5. Later, the generalized (κ, µ)-space with divided
R5 was introduced in [5]. This further generalizes generalized (κ, µ)-spaces. Here
R5 = R5,1 −R5,2 is divided into R5,1 and R5,2 such that

R5,1(U,W )X = g(hW,X)hU − g(hU,X)hW,

R5,2(U,W )X = g(ψhW,X)ψhU − g(ψhU,X)ψhW,

for any U ,W , X ∈ TM . Sharma and Vrancken [19] studied (κ, µ)-contact manifolds
with non-Killing conformal vector fields. Chen [7] examined a closed Einstein-Weyl
structure and two Einstein-Weyl structures on an acs (κ < 0, µ)-manifold. Ghosh
and Sharma [12] investigated a (κ, µ)-contact manifold with a divergence free Cotton
tensor. De and Sardar [10], studied Bach-flat (κ, µ)-almost co-Kähler manifolds.

In the last few decades there has been extensive study about Ricci solitons
and ∗-Ricci solitons on manifolds. The notion of Ricci solitons was introduced by
Hamilton as a natural generalization of Einstein metrics.

A Ricci soliton on a Riemannian manifold satisfies the following equation [8]

Ric+
1

2
LY g = ρg,(1.3)

where LY is the Lie-derivative along a smooth potential field Y , g is the Riemannian
metric, ρ is a real scalar and Ric is the Ricci tensor. Ricci solitons serve as solutions
to the Ricci flow of Hamilton [14], which evolve along the symmetries of the flow.
The soliton is steady, expanding or shrinking if ρ = 0, < 0 or > 0, respectively.

In 1959, Tachibana [21] introduced the notion of ∗-Ricci tensors on almost Her-
mitian manifolds. Later, Hamada [13] defined ∗-Ricci tensors of real hypersurfaces
in non-flat complex space forms, and then Kaimakamis et al. [15] introduced the
notion of ∗-Ricci solitons in non-flat complex space forms.

The ∗-Ricci tensor on an almost contact metric (a.c.m) manifold M ([13]) is
defined by

Ric∗(U,W ) =
1

2
trace(X 7→ R(U,ψW )ψX), ∀U,W ∈ TM,(1.4)

where ψ is a (1, 1)-tensor field and R is a Riemann curvature tensor.
A ∗-Ricci soliton on a Riemannian manifold (M, g) is a generalisation of the

∗-Einstein manifold and defined as [15]:

Ric∗ +
1

2
LY g = ρg.(1.5)

Many authors have studied solitons on a.c.m manifolds: Sharma initiated the
study of Ricci solitons in contact geometry as a K-contact and (κ, µ)-contact metric
[18]. Suh et al. studied Ricci solitons on almost co-Kähler manifolds [20]. Dai [9]
investigated ∗-Ricci soliton on a (κ < 0, µ)-acs manifold and proved that there do
not exist ∗-Ricci soliton on a (κ < 0, µ)-acs manifold.
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In view of the above, we study the existence of ∗-Ricci solitons on a non-
cosymplectic (κ, µ)-acs manifold. Contrary to the non-existence of ∗-Ricci soliton
in [9] we show that there exists a steady ∗-Ricci soliton. Further, we study the
existence/non-existence of some particular type of potential vector field Y on a
non-cosymplectic (κ, µ)-acs manifold admitting Ricci solitons and ∗-Ricci solitons.

This paper is organised as follows: in Section 2, we give some background which
is necessary to understand the subsequent sections. In Section 3, we study ∗-Ricci
solitons on non-cosymplectic (κ, µ)-almost cosymplectic manifolds. Section 4 deals
with the study of a potential vector field Y as concurrent, concircular, torse forming
and torqued vector field. In Section 5, we give some examples.

2. Preliminaries

A smooth Riemannian manifold M2n+1 is called an a.c.m manifold if there
exists structure tensors (ψ, ξ, η, g) satisfying [1]

ψ2 = −id+ η ⊗ ξ, η o ψ = 0, ψξ = 0, η(ξ) = 1,(2.1)

g(ψU, ψW ) = g(U,W )− η(U)η(W ),(2.2)

for any U , W ∈ TM , where ψ is a tensor field of type (1, 1), ξ a global vector
field and η a 1-form. We denote by Φ the fundamental 2-form which is defined as
Φ(U,W ) = g(U,ψW ). An a.c.m manifold M2n+1 with dη = Φ is called contact
manifold. An a.c.m manifold with η and Φ closed is called an almost cosymplectic
manifold. A normal almost cosymplectic manifold is called cosymplectic manifold.

On an acs manifold, we have [4]

h =
1

2
Lξψ, h

′ = h oψ,(2.3)

hξ = 0, hψ + ψh = 0, trh = trh′ = 0,(2.4)

ψlψ − l = 2h2,(2.5)

∇Uξ = h′U,(2.6)

where l = R(., ξ)ξ and both h, h′ are symmetric operators with respect to metric g.
Also, on an acs manifold, we have [11]

R(U,W )ξ = (∇Wψh)U − (∇Uψh)W,(2.7)

for any U , W ∈ TM .
The (κ, µ)-nullity distribution of an acs manifold M2n+1 for (κ, µ) ∈ R2 is a

distribution [11]

N(κ, µ) : p→ Np(κ, µ) = {Z ∈ Tp(M)|R(U,W )X = κ(g(W,X)U

−g(U,X)W ) + µ(g(W,X)hU − g(U,X)hW )}.

Endo [11] introduced (κ, µ)-acs manifolds with the Reeb vector ξ in the (κ, µ)-
nullity distribution, which satisfy (1.1). If ξ is in the (κ 6= 0, µ)-nullity distribution,
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then such manifolds are called non-cosymplectic (κ, µ)-acs manifolds. For more
work about non-cosymplectic (κ, µ)-acs manifolds, please see [11].

On (κ < 0, µ)-acs manifold using (1.1) and (2.7), we have

(∇Wψh)U − (∇Uψh)W = κ(g(W,X)U − g(U,X)W )(2.8)

+µ(g(W,X)hU − g(U,X)hW ).

Also, on a Riemannian manifold M we have following [23] :

(∇XLY g)(U,W ) = g((LY ∇)(X,U),W ) + g((LY ∇)(X,W ), U),(2.9)

(LY R)(U,W )X = (∇ULY ∇)(W,X)− (∇WLY ∇)(U,X),(2.10)

∀ U , W , X ∈ TM .

3. ∗-Ricci Solitons on (κ < 0, µ)-acs Manifolds

Let M2n+1 be a (κ, µ)-acs manifold. Then, from (1.1), we obtain

l = −κψ2 + µh.(3.1)

Using (3.1) in (2.5), we get

h2 = κψ2.(3.2)

Let U be an eigenvector of h for eigenvalue θ with U ⊥ ξ, then using (2.3), (2.4)
and (3.2), we get

θ2 = −κ.(3.3)

From (3.3), we find that κ ≤ 0. However, κ = 0 if and only if h = 0. Here, we
study non-cosymplectic (κ < 0, µ)-acs manifolds.

On an acs manifold M2n+1(κ < 0, µ), we have([4, 9])

Q = µh+ 2nκη ⊗ ξ,(3.4)

Ric∗(U,W ) = −κg(ψU, ψW ),(3.5)

where Q denotes Ricci operator and U , W ∈ TM .

Lemma 3.1. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.5), then

(LY R)(U,W )X = 2κ2(η(U)g(W,X)− η(W )g(U,X))ξ(3.6)

+ 2κµ(η(U)g(hW,X)− η(W )g(hU,X))ξ

+ 2κ(g(h′U,X)h′W − g(h′W,X)h′U),

for any U,W,X ∈ TM .
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Proof. Using (3.5) in (1.5), we obtain

(LY g)(W,X) = 2ρg(W,X) + 2κg(ψW,ψX).(3.7)

Differentiating (3.7) with respect to U on M and using (2.6), we find

(∇ULY g)(W,X) = −2κ
(

g(h′U,W )η(X) + g(h′U,X)η(W )
)

.(3.8)

Using (3.8) in (2.9), we obtain

g((LY ∇)(U,W ), X) + g((LY ∇)(U,X),W ) = −2κ(g(h′U,W )η(X)(3.9)

+g(h′U,X)η(W )).

Similarly, we get

g((LY ∇)(W,X), U) + g((LY ∇)(W,U), X) = −2κ(g(h′W,X)η(U)(3.10)

+g(h′W,U)η(X)),

g((LY ∇)(X,U),W ) + g((LY ∇)(X,W ), U) = −2κ(g(h′X,U)η(W )(3.11)

+g(h′X,W )η(U)).

Adding (3.9) and (3.10) and subtracting (3.11), we get

g((LY ∇)(U,W ), X) = −2κg(h′U,W )η(X),

which gives

(LY ∇)(W,X) = −2κg(h′W,X)ξ.(3.12)

Differentiating (3.12) along U on M , we find

(∇ULY ∇)(W,X) = −2κ
(

g((∇Uh
′)W,X)ξ + g(h′W,X)h′U

)

.(3.13)

Using (3.13) in (2.10), we obtain

(LY R)(U,W )X = −2κ
(

g((∇Wψh)U,X)ξ − g(ψhU,X)ψhW
)

(3.14)

+2κ
(

g((∇Uψh)W,X)ξ − g(ψhW,X)ψhU
)

.

Using (2.8) in (3.14), we get (3.6). Hence, the proof of Lemma is complete. 2

Theorem 3.2. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.5). Then
∗-soliton is steady.

Proof. Let {ei}2ni=0 be a local orthonormal basis for TM . From (3.6), we obtain

g((LY R)(U,W )X,U) = 2κ2
(

η(U)g(W,X)− η(W )g(U,X)
)

η(U)(3.15)

+2κµ
(

η(U)g(hW,X)− η(W )g(hU,X)
)

η(U)

+2κ
(

g(h′U,X)g(h′W,U)− g(h′W,X)g(h′U,U)
)

,
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for U,W,X ∈ TM .
Contracting (3.15) over U , we get

(LY S)(W,X) = 2κ2g(ψW,ψX) + 2κµg(hW,X) + 2κg(h′X,h′W ),

which gives

(LY g)(QW,X) + g((LYQ)W,X) = 2κ2g(ψW,ψX) + 2κµg(hW,X)(3.16)

+2κg(ψhX,ψhW ).

Using (3.7) in (3.16), we obtain

2(κ+ ρ)g(QW,X)− 2κη(QW )η(X) + g((LYQ)W,X)(3.17)

= 2κ2g(ψW,ψX) + 2κµg(hW,X) + 2κg(hW, hX).

Using (3.2) and (3.4) in (3.17), we find

(LYQ)W = −2µρhW − 4nκρη(W )ξ.(3.18)

From (3.4), we get

QW = µhW + 2nκη(W )ξ.(3.19)

Lie-derivative of (3.19) along Y gives

(3.20) (LYQ)W = µ(LY h)W +2nκg(∇WY, ξ)ξ+2nκg(W,h′Y )ξ+2nκη(W )LY ξ.

Comparing (3.18) and (3.20), we obtain

−2µρhW − 4nκρη(W )ξ = µ(LY h)W + 2nκg(∇WY, ξ)ξ(3.21)

+2nκg(W,h′Y )ξ + 2nκη(W )LY ξ.

Putting W = ξ in (3.21), we get

−4nκρξ = −µhLY ξ + 2nκg(∇ξY, ξ)ξ + 2nκLY ξ.(3.22)

Taking inner product of (3.22) with ξ, we get

κρ = 0,

which implies ρ = 0 as κ < 0. Hence the proof of the Theorem. 2

Using (1.5), (2.4), (3.4), (3.5), and Theorem 3.2, we get r = 2κn, and div Y =
2κn, where r and div denote the scalar curvature and divergence, respectively.
Therefore, we have

Corollary 3.3. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.5), then
div Y = r < 0.



∗-Ricci Soliton on (κ < 0, µ)-almost Cosymplectic Manifolds 339

Corollary 3.4. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.5), then Y
cannot be ξ.

Proof. Suppose Y = ξ. Then, putting potential vector field Y = ξ in (1.5) and
using (2.6), (3.5) and Theorem 3.2, we get

g(h′U,W ) = κg(ψU, ψW )(3.23)

Taking trace of (3.23) and using (2.4), we obtain 2κn = 0, which is not possible
as κ < 0. Hence the result. 2

Remark 3.5. In [9] the author proved that there do not exist ∗-Ricci soliton on
non-cosymplectic (κ, µ)-acs manifolds. Unfortunately, there is a crucial error in
their proofs. In page 4 of [9], the equation (3.5) should be corrected as

(LV R)(X,Y )Z = 2κ2(η(X)g(Y, Z)− η(Y )g(X,Z))ξ

+ 2κµ(η(X)g(hY, Z)− η(Y )g(hX,Z))ξ

+ 2κ(g(h′X,Z)h′Y − g(h′Y, Z)h′X).

In page 5 of [9], the equation (3.12) should be corrected as

(LVQ)X = −2µλhX − 4nκλη(X)ξ.

Thereafter, the argument given in [9] is not useful to obtain correct result.

4. ∗-Ricci Solitons on (κ < 0, µ)-acs Manifolds with Some Particular
Potential Vector Fields

In 1944, Yano [22] introduced a torse-forming vector field as a generalization of
concircular, concurrent and parallel vector fields.

Definition 4.1. A vector field V is called torse forming if

∇UV = fU + ω(U)V,(4.1)

where f ∈ C∞(M), U ∈ TM and ω is a 1-form.

The vector field V is called concircular if ω in (4.1) vanishes identically. Con-
circular vector field is also known as geodesic vector field as its integral curve forms
geodesics. It has interesting applications in general relativity and in the theory of
conformal and projective transformation.

If V satisfies

∇UV = U, ∀U ∈ TM,(4.2)

then V is called concurrent. If V satisfies (4.1) with f = 0, then V is called recurrent.
Also, if f = ω = 0 in (4.1), then V is called parallel.
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Recently, in 2017, Chen [6] introduced a torqued vector field. If a non-vanishing
V satisfies (4.1) with ω(V) = 0, then V is called torqued, f the torqued function and
ω torqued form of V. For more details about these vector fields (please see [6, 22])
and references therein.

Now, we have

Theorem 4.2. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.3). Then the
potential vector field Y cannot be concurrent.

Proof. Suppose Y be a concurrent field, then using (3.4) and (4.2) in (1.3), we have

µg(hU,W ) + 2nκη(U)η(W ) = (ρ− 1)g(U,W ).(4.3)

Contracting (4.3) over U and W , we obtain

2nκ = (ρ− 1)(2n+ 1).(4.4)

From (4.4), we find that

κ =
(ρ− 1)(2n+ 1)

2n
.(4.5)

Using ρ = 2nκ (cf. [20], Theorem 5.1) in (4.5), we get κ = 2n+1

4n2 > 0, a
contradiction as κ < 0. Thus proof is complete. 2

Theorem 4.3. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.5), then the
potential vector field Y cannot be concurrent.

Proof. Suppose Y be a concurrent field. Using (3.5), (4.2) and Theorem 3.2 in
(1.5), we get

(1− κ)g(U,W ) + κη(U)η(W ) = 0.(4.6)

Contracting (4.6) over U and W , we obtain κ = 2n+1

2n
> 0, which is not possible

as κ < 0. Hence the result. 2

Theorem 4.4. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.5). If Y be a
torse forming vector field, then

f +
ω(Y )

2n+ 1
=

2nκ

2n+ 1
,(4.7)

where f ∈ C∞(M) satisfying (4.1).

Proof. Let Y be a torse forming field, then using (3.5), (4.1) and Theorem 3.2 in
(1.5), we get

ω(U)g(Y,W ) + ω(W )g(Y, U) + (2f − 2κ)g(U,W ) = −2κη(U)η(W ).(4.8)

Putting U = ei and W = ei and tracing i = 1 to 2n+ 1, we obtain (4.7). 2
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Corollary 4.5. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.5). If Y be a
torqued vector field, then torqued function f is a constant and ξ cannot be torqued.

Proof. Suppose Y be a torqued field then ω(Y ) = 0. Using this condition in (4.7)
we obtain f = 2nκ

2n+1
. Whereby, we get f is a constant. As ω(ξ) 6= 0 so ξ cannot be

torqued. 2

Theorem 4.6. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.5). If Y be a
concircular vector field, then f is a constant given by

f =
2nκ

2n+ 1
.(4.9)

Proof. Let Y be a concircular field, then

∇UY = fU, f ∈ C∞(M).(4.10)

Using (3.5), (4.10) and Theorem 3.2 in (1.4), we get

(f − κ)g(U,W ) + κη(U)η(W ) = 0.(4.11)

Contracting (4.11) over U and W , we obtain (4.9). 2

Theorem 4.7. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.3). If Y be a
torse forming vector field, then

ρ = f +
ω(Y )

2n+ 1
+

2nκ

2n+ 1
.(4.12)

Proof. Let Y be a torse forming field. Using (4.1) and (3.4) in (1.3), we get

ω(U)g(Y,W ) + ω(W )g(Y, U) + 2µg(hU,W ) + 4nκη(U)η(W )

= 2(ρ− f)g(U,W ).
(4.13)

Taking trace of (4.13) over U and W , we obtain (4.12). 2

Theorem 4.8. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.3). If Y be a
concircular vector field, then f is a constant given by

f = ρ− 2nκ

2n+ 1
.(4.14)

Proof. Let Y be a concircular field. Using (3.4) and (4.10) in (1.3), we get

(f − ρ)g(U,W ) + µg(hU,W ) + 2nκη(U)η(W ) = 0.(4.15)

Contracting (4.15) over U and W , we obtain (4.14). 2
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Corollary 4.9. Let M2n+1(κ < 0, µ) be an acs manifold satisfying (1.3). If Y be
a torqued vector field, then torqued function f is a constant.

Proof. Suppose Y be a torqued field then ω(Y ) = 0. Using this condition in (4.12)
we obtain f = ρ− 2nκ

2n+1
. Hence f is a constant. 2

5. Examples of ∗-Ricci Soliton on (κ < 0, µ)-acs Manifolds

In the following examples, the (1,1)-tensor ψ is defined as

ψ(e1) = e2, ψ(e2) = −e1, ψ(e3) = 0.

Example 5.1. Consider M = {(x, y, z) ∈ R3 : x 6= 0} with structure tensors






























g = dx⊗ dx+ dy ⊗ dy − xdy ⊗ dz − xdz ⊗ dy + (x2 + 1)dz ⊗ dz,

e1 = ∂
∂x
, e2 = ∂

∂y
, e3 = ξ = ∂

∂z
+ x ∂

∂y
, η = dz,

h =







− 1

2
0 0

0 1

2
−x

2

0 0 0






.

(5.1)

From (5.1), we have

[eq, e2] = 0, q = 1, 3; [e1, e3] = e2.(5.2)

The Koszul’s formula with Riemannian connection ∇ is given by

2g(∇UW,X) = Ug(W,X) +Wg(X,U)−Xg(U,W )− g(U, [W,X ])

− g(W, [U,X ]) + g(X, [U,W ]),
(5.3)

∀ U , W , X ∈ TM .
From (5.2) and (5.3), we find

{

∇eqeq = 0, q = 1, 2, 3; ∇e2e1 = − 1

2
e3 = ∇e1e2,

∇e3e1 = − 1

2
e2 = −∇e1e3, ∇e3e2 = ∇e2e3 = 1

2
e1.

(5.4)

Computing Riemann curvature tensors using (5.4), we get

R(e2, e1)ξ = 0, R(e2, ξ)ξ =
1

4
e2, R(e1, ξ)ξ = −3

4
e1.(5.5)

Further, from (1.1), we obtain

R(e2, e1)ξ = 0, R(eq, ξ)ξ = κeq + µheq, q = 1, 2.(5.6)

From (2.4) and (3.3), we find that h on M satisfies

he1 = −
√
−κe1, he2 =

√
−κe2, he3 = 0.(5.7)
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Using (5.1), (5.5), (5.6) and (5.7), we find that M is a (κ < 0, µ)-acs manifold
with κ = −1

4
, µ = 1.

Further, from (3.5), we obtain
{

S∗(ei, ei) =
1

4
, i = 1, 2; S∗(e3, e3) = 0,

S∗(eq, ep) = 0, q 6= p; q, p = 1, 2, 3.
(5.8)

Also, we have

Y = (z−x
4
)
∂

∂x
+(
z2 − x2

2
−y
4
)
∂

∂y
−x ∂

∂z
, [Y, e1] = (e1/4)+e3, [Y, e2] = e2/4, [Y, e3] = −e1.

Now, we can see that

(LY g)(ep, eq) + 2S∗(ep, eq) = 2ρg(ep, eq),(5.9)

for ρ = 0 and p, q = 1, 2, 3.
Hence M is a non-cosymplectic (− 1

4
, 1)-acs manifold admitting steady ∗-Ricci soli-

ton. Also, div Y = − 1

2
.

Example 5.2. Consider M = {(x, y, z) ∈ R3 : x, y 6= 0} with







































g = dx⊗ dx− y
2
dx⊗ dz + dy ⊗ dy − xdy ⊗ dz − y

2
dz ⊗ dx

−xdz ⊗ dy + (x2 + y2

4
+ 1)dz ⊗ dz, e1 =

∂
∂x
, e2 = ∂

∂y
,

e3 = ξ = ∂
∂z

+ x ∂
∂y

+ y
2

∂
∂x
, η = dz,

h =







− 3

4
0 0

0 3

4

3y
8
− 3x

4

0 0 0






, Y = − 9x

16

∂
∂x

− 9y
16

∂
∂y

− 2c1
∂
∂z
,

(5.10)

where Y is potential field and c1 is an arbitrary constant. Then similar to Example
5.1, computation can be done to show that M is a non-cosymplectic (− 9

16
, 1
2
)-acs

manifold admitting steady ∗-Ricci soliton.
Example 5.3. Consider M = {(x, y, z) ∈ R3 : x, y 6= 0} with structure tensors































g = dx⊗ dx− ydx⊗ dz + dy ⊗ dy − xdy ⊗ dz − ydz ⊗ dx

−xdz ⊗ dy + (x2 + y2 + 1)dz ⊗ dz, η = dz, e1 = ∂
∂x
,

e2 = ∂
∂y
, e3 = ξ = ∂

∂z
+ x ∂

∂y
+ y ∂

∂z
, h =







−1 0 y

0 1 −x
0 0 0






.

(5.11)

Then, M is a non-cosymplectic (−1, 0)-acs manifold. Further, M admits steady
∗-Ricci soliton with potential vector field

Y = (−x+ e−z + ez)
∂

∂x
+ (−y − e−z + ez)

∂

∂y
− ∂

∂z
.
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Moreover, M admits expanding Ricci soliton with potential vector field

Y = (−2x+ ez + e−z)
∂

∂x
+ (−2y + ez − e−z)

∂

∂y
− ∂

∂z
.

Acknowledgements. The authors are thankful to the referees for their valuable
suggestions for improvement of the article. The first author is thankful to GGSIP
University for research fellowship F.No. GGSIPU/DRC/2021/685.

References

[1] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
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