• Title/Summary/Keyword: quasi-variational inequality

Search Result 26, Processing Time 0.024 seconds

MIXED QUASI VARIATIONAL INEQUALITIES INVOLVING FOUR NONLINEAR OPERATORS

  • Pervez, Amjad;Khan, Awais Gul;Noor, Muhammad Aslam;Noor, Khalida Inayat
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.17-35
    • /
    • 2020
  • In this paper we introduce and consider a new class of variational inequalities with four operators. This class is called the extended general mixed quasi variational inequality. We show that the extended general mixed quasi variational inequality is equivalent to the fixed point problem. We use this alternative equivalent formulation to discuss the existence of a solution of extended general mixed quasi variational inequality and also develop several iterative methods for solving extended general mixed quasi variational inequality and its variant forms. We consider the convergence analysis of the proposed iterative methods under appropriate conditions. We also introduce a new class of resolvent equation, which is called the extended general implicit resolvent equation and establish an equivalent relation between the extended general implicit resolvent equation and the extended general mixed quasi variational inequality. Some special cases are also discussed.

On the browder-hartman-stampacchia variational inequality

  • Chang, S.S.;Ha, K.S.;Cho, Y.J.;Zhang, C.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.493-507
    • /
    • 1995
  • The Hartman-Stampacchia variational inequality was first suggested and studied by Hartman and Stampacchia [8] in finite dimensional spaces during the time establishing the base of variational inequality theory in 1960s [4]. Then it was generalized by Lions et al. [6], [9], [10], Browder [3] and others to the case of infinite dimensional inequality [3], [9], [10], and the results concerning this variational inequality have been applied to many important problems, i.e., mechanics, control theory, game theory, differential equations, optimizations, mathematical economics [1], [2], [6], [9], [10]. Recently, the Browder-Hartman-Stampaccnia variational inequality was extended to the case of set-valued monotone mappings in reflexive Banach sapces by Shih-Tan [11] and Chang [5], and under different conditions, they proved some existence theorems of solutions of this variational inequality.

  • PDF

COMPARISON EXAMPLES ON GENERALIZED QUASI-VARIATIONAL INEQUALITIES

  • Kum, Sang-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.371-377
    • /
    • 1999
  • The purpose of this paper is to provide two examples which prove that Cubiotti's theorem and Yao's one on the generalized quasi-variational inequality problem are independent of each other. In addition, we give another example which tells us that certain conditions are essential in Cubiotti's theorem and Yao's one.

  • PDF

A REMARK ON MULTI-VALUED GENERALIZED SYSTEM

  • Kum, Sangho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.163-169
    • /
    • 2011
  • Recently, Kazmi and Khan [7] introduced a kind of equilibrium problem called generalized system (GS) with a single-valued bi-operator F. In this note, we aim at an extension of (GS) due to Kazmi and Khan [7] into a multi-valued circumstance. We consider a fairly general problem called the multi-valued quasi-generalized system (in short, MQGS). Based on the existence of 1-person game by Ding, Kim and Tan [5], we give a generalization of (GS) in the name of (MQGS) within the framework of Hausdorff topological vector spaces. As an application, we derive an existence result of the generalized vector quasi-variational inequality problem. This result leads to a multi-valued vector quasi-variational inequality extension of the strong vector variational inequality (SVVI) due to Fang and Huang [6] in a general Hausdorff topological vector space.

CONVERGENCE OF MODIFIED VISCOSITY INEXACT MANN ITERATION FOR A FAMILY OF NONLINEAR MAPPINGS FOR VARIATIONAL INEQUALITY IN CAT(0) SPACES

  • Kyung Soo Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1127-1143
    • /
    • 2023
  • The purpose of this paper, we prove convergence theorems of the modified viscosity inexact Mann iteration process for a family of asymptotically quasi-nonexpansive type mappings in CAT(0) spaces. We also show that the limit of the modified viscosity inexact Mann iteration {xn} solves the solution of some variational inequality.

AN EXTENSION OF GENERALIZED VECTOR QUASI-VARIATIONAL INEQUALITY

  • Kum Sang-Ho;Kim Won-Kyu
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.273-285
    • /
    • 2006
  • In this paper, we shall give an affirmative answer to the question raised by Kim and Tan [1] dealing with generalized vector quasi-variational inequalities which generalize many existence results on (VVI) and (GVQVI) in the literature. Using the maximal element theorem, we derive two theorems on the existence of weak solutions of (GVQVI), one theorem on the existence of strong solution of (GVQVI), and one theorem on strong solution in the 1-dimensional case.

WEIGHT NASH EQUILIBRIA FOR GENERALIZED MULTIOBJECTIVE GAMES

  • Kim, Won Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2000
  • The purpose of this paper is to give a new existence theorem of a generalized weight Nash equilibrium for generalized multiobjective games by using the quasi-variational inequality due to Yuan.

  • PDF

STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS, FIXED POINT PROBLEMS OF QUASI-NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITY PROBLEMS

  • Li, Meng;Sun, Qiumei;Zhou, Haiyun
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.813-823
    • /
    • 2013
  • In this paper, a new iterative algorithm involving quasi-nonexpansive mapping in Hilbert space is proposed and proved to be strongly convergent to a point which is simultaneously a fixed point of a quasi-nonexpansive mapping, a solution of an equilibrium problem and the set of solutions of a variational inequality problem. The results of the paper extend previous results, see, for instance, Takahashi and Takahashi (J Math Anal Appl 331:506-515, 2007), P.E.Maing $\acute{e}$ (Computers and Mathematics with Applications, 59: 74-79,2010) and other results in this field.

ON OPTIMAL SOLUTIONS OF WELL-POSED PROBLEMS AND VARIATIONAL INEQUALITIES

  • Ram, Tirth;Kim, Jong Kyu;Kour, Ravdeep
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.781-792
    • /
    • 2021
  • In this paper, we study well-posed problems and variational inequalities in locally convex Hausdorff topological vector spaces. The necessary and sufficient conditions are obtained for the existence of solutions of variational inequality problems and quasi variational inequalities even when the underlying set K is not convex. In certain cases, solutions obtained are not unique. Moreover, counter examples are also presented for the authenticity of the main results.

Hybrid Algorithms for Ky Fan Inequalities and Common Fixed Points of Demicontractive Single-valued and Quasi-nonexpansive Multi-valued Mappings

  • Onjai-uea, Nawitcha;Phuengrattana, Withun
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.703-723
    • /
    • 2019
  • In this paper, we consider a common solution of three problems in real Hilbert spaces: the Ky Fan inequality problem, the variational inequality problem and the fixed point problem for demicontractive single-valued and quasi-nonexpansive multi-valued mappings. To find the solution we present a new iterative algorithm and prove a strong convergence theorem under mild conditions. Moreover, we provide a numerical example to illustrate the convergence behavior of the proposed iterative method.