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AN EXTENSION OF GENERALIZED
VECTOR QUASI-VARIATIONAL INEQUALITY

SancgHO KuM™ AND WoN Kyu Kim

ABSTRACT. In this paper, we shall give an affirmative answer to the
question raised by Kim and Tan [1] dealing with generalized vec-
tor quasi-variational inequalities which generalize many existence
results on (VVI) and (GVQV]) in the literature. Using the maxi-
mal element theorem, we derive two theorems on the existence of
weak solutions of (GVQVI), one theorem on the existence of strong
solution of (GVQVI), and one theorem on strong solution in the
1-dimensional case.

1. Introduction and preliminaries

Let X be a nonempty set. We shall denote by 2% the family of all
subsets of X. A multifunction of X into another nonempty set Y is a
function from X into 2¥. Let E and F be real Hausdorff topological
vector spaces, C a multifunction of a set X C E into F such that
for any ¢ € X, C(z) is a (not necessarily closed) convex cone in F,
int C(z) # 0 and C(z) # F, where int C(z) denotes the interior of C(z).
Let T : X — 25(EF) be a multifunction on X C E into L(E, F), the
space of all linear continuous operators from £ to F', g: X — X be a
single-valued function, and A : X — 2% be a multifunction.

Consider a generalized vector quasi-variational inequality (in short,
GVQVI) with multifunctions :

(GVQVI) Find & € X such that & € clA(Z) and
(1.1) (T(2),z — g(2)) € —int C(&) for every = € A(Z),
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where cl A(Z) denotes the closure of A(Z) in X and (, ) is the evaluation
between L(E,F) and E. The motivation for considering this kind of
(GVQVI) comes from a recent work of Kim and Tan [6]. They obtained
existence results on (GVQVI) with a single valued function 7. Then
they raised a question :

“ Can we extend the results to the multi-valued case T 7 ”

Let us temporarily explain properties of solutions of (GVQVI) : A
solution Z of (GVQVI) is usually called a weak solution while a solution
Z is said to be a strong solution of (GVQVI) if there exists § € T(Z)
(not depending on z € A(%)) such that

(1.2) (§,z — g(z)) ¢ —int C(z) for all = € A(Z).

In the case of T being a single valued function, it is meaningless to dis-
tinguish a strong solution from a weak one. As remarked in [5], the
strong solutions of (GVQVI) have not been systematically investigated
until now, and so existence theorems for strong solutions are of real in-
terests since strong solutions can be interpreted as the optimal solutions
in numerous practical models (e.g., in mathematical economics, control
theory, network problems, et al.). Also we would like to point out that
in a recent paper, Chiang et al. [2] discussed strong solutions for a
generalized vector quasi-equilibrium problem (in short, GVQEP) under
suitable conditions.

The aim of this paper is to give an affirmative answer to the above
question raised by Kim and Tan [6] so that we can generalize many
existence results on (VVI) and (GVQVI) in the literature (e.g., see [5,
6] and references therein). To be more specific, we derive two theorems
on the existence of weak solutions of (GVQVI), one theorem on the
existence of strong solution of (GVQVI), and one theorem on strong
solution in the special case F' = R, hence L(E, F) = E* the dual space
of F.

In relation to this work, the following comment should be made: Ac-
tually, in their recent work, Khanh and Luu [5] extended Theorem 1 in
[6], one of the main results in [6], to the multi-valued case. However, the
contents of their paper and our results are different in several respects.
One of them is the proving method. That is, we insist on the original
method in [6], say, maximal element theorem whereas they used Fan’s
KKM Lemma. Also topological assumptions and examples are differ-
ent. In particular, we need not the closedness of the convex cone C(z)
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while they assumed it. But, motivated by [5], we could add Theorem
3 regarding the existence of strong solution of (GVQVI). To do so, we
shall need the monotone type condition on T as follows:

For any t1,t2 € T(z) and y1,y2 € X with
(t1,91 —g(z)) € —int C(z) and (t2,y2 — g(z)) € —int C(x);
then T satisfies the condition
(1.3) (t1,y2 — 9(2)) + (t2,31 — g(2)) € —int C(z).

It should be noted that if T is single-valued, then the condition (1.3)
is automatically satisfied since —int C(x) is a convex cone.

Let us recall some basic terminologies. A multifunction T : X — 2Y
is said to be upper semicontinuous if for each x € X and each open set
V inY with T(z) C V, then there exists an open neighborhood U of z in
X such that T(y) C V for each y € U; and a multifunction T : X — 2Y
is said to be lower semicontinuous if for each z € X and each open set
V in Y with T(z) NV # 0, then there exists an open neighborhood U
of z in X such that T(y) NV # ( for each y € U. A multifunction T'
is said to be continuous if T is both upper semicontinuous and lower
semicontinuous.

We shall need the following lemma, which is a special case of Theorem
2 of Ding-Kim-Tan [4]:

LEMMA 1. Let T' = (X, A, P) be an 1-person game such that

(1) X is a nonempty compact convex subset of a Hausdorff topological
vector space,

(2) A: X — 2% js a multifunction such that for each x € X, A(z) is
nonempty convex and for each y € X, A~(y) is open in X,

(3) the multifunction cl A : X — 2% is upper semicontinuous,

(4) P : X — 2% is a multifunction such that P~'(y) is open in X for
each y € X,

(5) for each ¢ € X, © ¢ coP(z), where co P(x) denotes the convex
hull of P(z).

Then I' has an equilibrium choice & € X ; i.e.,
Z€cA(z) and A(z)NP(Z)=0.

For non-compact settings, we shall need the following lemma, which
is a particular form of Theorem 2 of Ding-Kim-Tan [3]:
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LemmA 2. Let I' = (X, A, P) be an 1-person game such that

(1) X is a nonempty convex subset of a locally convex Hausdorff topo-
logical vector space and D is a nonempty compact subset of X,

(2) A: X — 2P is a multifunction such that for each z € X, A(z) is
nonempty convex and for each y € D, A~(y) is open in X,

(3) the multifunction cl A : X — 2% is upper semicontinuous,

(4) P : X — 2P is a multifunction such that P~1(y) is open in X for
eachy € D,

(5) for each z € X, z ¢ co P(x).

Then I' has an equilibrium choice & € D; i.e.,

#ecA@) and A(%)NPGE)=0.

2. Main results

We begin with the following result on (GVQVI) :

THEOREM 1. Let X be a nonempty compact convex subset of a Haus-
dorfl topological vector space E and let F' be a Hausdorff topological
vector space. Let T : X — 2L(E:F) be a nonempty compact-valued and
upper semicontinuous multifunction, where L(E, F') is equipped with the
topology of compact convergence. Let C : X — 2F be a multifunction
such that for each z € X, C(x) is a convex cone in F with —int C(z) # 0
and C(x) # F. Suppose that g : X — X is continuous and A : X — 2%
is a multifunction such that each A(x) is nonempty convex, each A~1(y)
is open in X and cl A : X — 2% is upper semicontinuous. Furthermore,
assume that the multifunction W : X — 28 Wz = F\ (-intC(z)) is
closed, that is, the graph Gr(W) of W is closed in X x F and

(2.1) (T(z),z — g(z)) € —int C(z) for each z € X,

where (T'(z),z — g(z)) denotes the set {(s,x — g(x)) : s € T(x)}.
Then there exists a point £ € X such that

£ € cdA(z) and (T(&),z —g(2)) € —intC(&) for every z € A(Z).
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PROOF. Define P: X — 2X by
Pz):={ye X: (T(z),y — g(z)) C —int C(z)} for each z € X.

Then P(z) is convex, hence P(z) = coP(z) for each z € X. Indeed, let
Y1, Y2 € P(z) and t € [0,1]. Since (T(z),y; — g(z)) C —int C(z) for
1 =1,2, we have

(T(x), ty1 + (L - t)y2 — g(2))
C HT(2),y1 — g(z)) + (1 = )(T(x), y2 — g(=))
C —int C(x)
because —int C(x) is a convex cone. By (2.1), z ¢ P(z) = coP(x) for

all z € X. This shows that the condition (5) of Lemma 1 is satisfied.
Next we shall show that P~(y) is open in X for each y € X. Note that

P (y) = {z € X : (T(x),y — g(z)) C —int O(a)}.

Let (zx)aer be a net in (P71(y))¢ = X \ P~1(y) converging to Z € X.
Since x5 € (P~1(y))¢, we have

(T'(zx),y — glza)) NW(za) # 0.

Thus there exists sy € T'(zy) such that (sx,y — g(z,)) € W(z,). Since
T(X) is a compact subset of L(E, F), we may assume without loss of
generality that there exists 5 € T'(X) such that sy — 5. As T is upper
semicontinuous, we get 5§ € T(Z). Hence we have

(2,9 = 9(zx)) = (8,9 — 9(2)) € (T(Z),y — 9(2))

because L(E, F) is endowed with the topology of compact convergence.
Also (3,y — g(z)) € W(Z) by the closedness of the graph of W. Thus

(T(z),y — g(2)) N W(Z) # 0.

Therefore Z € (P~ 1(y))¢, so that P~1(y) is open in X. This shows that
the condition (4) of Lemma 1 is also satisfied. By assumptions, the rest
of the hypotheses of Lemma 1 are also satisfied so that by Lemma 1,
there exists £ € X such that & € clA(%) and A(Z)N P(&) = (). Therefore
we have & € clA(Z) and

(T(%),z—g(2)) € —int C(2) for every x € A().
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This completes the proof. g

REMARK 1. Let’s look at the minimal topological assumption on T'
and L(E, F) in [6, Theorem 1]:

“Let the single valued operator T': X — L(E, F') be such that
(2.2)

(T(Za),Ya) — (T(z),y) in F whenever z, — z and y, — y in X.”

We have (T'(2a),ya) = (T(2),y) = (T(za) — T(2),4a) + (T(2), Yo —
y), hence (2.2) implies that T(z,) — T(z) uniformly on the net y,
in the compact set X because obviously (T'(z),ys — y) — 0 the ori-
gin of F. From this observation it is very natural to assume that
L(E,F) is equipped with the topology of compact convergence and
T:X — L(E,F) is continuous. Actually, among well-known topologies
on L(E, F) (for the various topologies on the space L(E, F'), refer to the
book of Bourbaki [1, III, p. 13-14]) the topology of compact convergence
is the most suitable one to ensure the convergence (2.2). Also it can be
easily checked that the convergence (2.2) is stronger than the topology
of pointwise convergence. Based on these facts, for the development to
a multifunction case in Theorem 1, we assumed that T : X — 2L(E:F) g
compact-valued and upper semicontinuous, where L(E, F') is equipped
with the topology of compact convergence. In this respect, we may
regard Theorem 1 as a real generalization of [6, Theorem 1] to the mul-
tifunction case 7. On the other hand, it is mentioned in [5] that the
topological assumption corresponding to (2.2) in multi-valued case is
fulfilled if E and F are Banach spaces and T : X — 2L(E:F) is compact-
valued and upper semicontinuous, where L(E, F') is equipped with the
usual norm topology.

Using Lemma 2, we can obtain the following existence theorem for
(GVQVI) in non-compact sets in a locally convex Hausdorff topological
vector space :

THEOREM 2. Let X be a nonempty convex subset of a locally convex
Hausdorff topological vector space E and let D be a nonempty compact
subset of X, and let F' be a Hausdorff topological vector space. Let T :
X — 2LEF) be a nonempty compact-valued and upper semicontinuous
multifunction such that the image T'(X) is contained in a compact subset
of L(E,F), where L(E, F) is equipped with the topology of compact
convergence. Let C : X — 2F be a multifunction such that for each
z € X, C(zx) is a convex cone in F with —intC(z) # § and C(z) #
F. Suppose that g : X — D is continuous and A : X — 2P is a
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multifunction such that each A(x) is nonempty convex, each A=1(y) is
open in X and cl A : X — 2P is upper semicontinuous. Furthermore,
assume that the multifunction W : X — 28, Wz = F \ (—intC(z)) is
closed, that is, the graph Gr(W) of W is closed in X x F and

(2.3) (T(z),z — g(z)) € —intC(z) for each z € X.

Here (T(x),z — g(z)) denotes the set {(s,z — g(z)) : s € T(x)}.
Then there exists a point & € D such that

#€cA(z) and (T(2),z—g(2)) € —intC(&) forevery = € A(Z).

PROOF. Define P: X — 2P by
P(z):={ye D: (T(z),y — g(z)) C —int C(z)} for each z € X.

Then the same argument in proving Theorem 1 shows that x ¢ P(z) =
coP(z) for all z € X and P~(y) is open for each y € D because the
image T'(X) is contained in a compact subset of L(E, F'). Thus all the
hypotheses of Lemma 2 are satisfied so that by Lemma 2, there exists
% € D such that & € clA(2) and A(Z) N P(Z) = 0. Hence we have
Z € clA(z) and

(T(2),z — g(2)) € —int C(&) for every = € A(%).
O

REMARK 2. In Theorem 2, we still use the topology of compact
convergence on L(E, F') and the upper semicontinuity of T in compar-
ison to the topological assumption (2.2) for a single-valued case in [6,
Theorem 2]. Also we supposed that the image T'(X) is contained in
a compact subset of L(E, F'). The reason why we are concerned with
those circumstances is that the condition (2.2) mixing the topology of
L(E,F) and the continuity of T is not very convenient in dealing with
the multi-valued case. It is rather useful to impose those conditions
separately.

As an application, we can obtain the single-valued version of Theorem
2 as follows.

COROLLARY 1. (cf. [6, Theorem 2]) Let X be a nonempty convex
subset of a locally convex Hausdorff topological vector space E and
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let D be a nonempty compact subset of X, and let F' be a Hausdorff
topological vector space. Let T : X — L(E, F') be a continuous function
such that the image T(X) is contained in a compact subset of L(E, F),
where L(E, F) is equipped with the topology of compact convergence.
Let C : X — 2F be a multifunction such that for each x € X, C(x)
is a convex cone in F with —intC(z) # 0 and C(z) # F. Suppose
that g : X — D is continuous and A : X — 2P is a multifunction
such that each A(z) is nonempty convex, each A~!(y) is open in X and
cl A: X — 2P is upper semicontinuous. Furthermore, assume that the
multifunction W : X — 2F, Wz = F\ (=intC(z)) is closed, that is,
the graph Gr(W) of W is closed in X x F and

(T(x),x — g(z)) ¢ —int C(x) for each x € X.
Then there exists a point & € D such that

Z e cdA(Z) and (T(2),z—g(2)) ¢ ~intC(Z) for every x € A(Z).

Now we give an example of non-compact setting in which Theorem 2
can be applied, but the corresponding results due to Kim and Tan [6],
Chiang et al. [2] and related existence theorems on compact settings are
not applicable.

EXxAMPLE 1. Let E=F =R, X =[0,00), D =[0,1],and L(E, F) =
E*, C(z) = [0,00), g(z) = {0} for each x € X. Now we consider the
following (GVQVI) problem for multifunctions

(Vz,1, if 0<z<1,

Alz) = { 11 if z=1,

1

-1 if 1

(x’ ], if =>1,

[0, z], if 0<z<1,
T(x) =
=104 i es1

X

Then it is easy to see that the whole assumptions of Theorem 2 are
satisfied, so we can obtain the solution Z = 1 € X such that Z € clA(z) =
{1} and (T'(z),z — g(Z)) > 0 for every x € A(Z).
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In a recent paper, as an application of the KKM-theorem, Khanh and
Luu [5] obtain an existence theorem on a strong solution of (GVQVI) us-
ing the pseudomonotone and generalized lower semicontinuous assump-
tions on T', and they give some applications on traffic equilibrium prob-
lems. Motivated by their work we consider the following. If a multifunc-
tion T satisfy the previous monotone type condition (1.3), then a strong
solution for the (GVQVI) can be obtained :

THEOREM 3. Let X be a nonempty compact convex subset of a Haus-
dorff topological vector space E and let F' be a Hausdorff topological
vector space. Let T : X — 2L(E:F) be a nonempty convex-valued and
lower semicontinuous multifunction, where L(E, F') is equipped with the
topology of compact convergence. Let C : X — 2 be a multifunction
such that for each x € X, C(z) is a convex cone in F with —int C(z) # 0
and C(z) # F. Suppose that g : X — X is continuous and A : X — 2%
is a multifunction such that each A(x) is nonempty convex, each A~1(y)
is open in X and cl A : X — 2% is upper semicontinuous. Furthermore,
assume that the multifunction W : X — 2F, Wa = F\ (—intC(z)) is
closed, that is, the graph Gr(W) of W is closed in X x F and

(2.4) (T(z),z — g(z)) C F\ —int C(z) for each z € X,

where (T'(z),z — g(x)) denotes the set {(s,z — g(z)) : s € T(x)}.
If T satisfy the condition (1.3), then there exists a point & € X such
that

% € cdA(2) and (T(2),z — g(2)) C F\ —int C(%) for every z € A(Z).

PROOF. We first define P : X — 2% by
Pz):={ye X : 3teT(z),({t,y—g(x)) € —intC(z)} for each z € X.

Then P(z) is convex, hence P(z) = coP(z) for each z € X. Indeed,
let y1, y2 € P(z) and A € [0,1]. Then there exist ¢1,t2 € T'(z) such
that (t;,y; — g(z)) € —int C(z) for ¢ = 1,2. Since T(z) is convex,
t:= M1+ (1 — Ntz € T(x) and let § := Ay; + (1 — N)y2 € X. Then we
have

(t,9— g(x)) = (A1 + (1 = Nta, My1 — g(z)) + (1 — M) (y2 — g(=)))
=X (t1,p1 — g(2)) + (1 — X)?(t2, 52 — g(2))
+ A1 = N ((t1, 92 — g(2)) + (t2,y1 — g(=))).
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Since —intC(x) is a convex cone, by the condition (1.3), we have
(t,5—g(z)) € —int C(z). Hence j € P(x) so that P(z) is convex. Also,
for each z € X, we have x ¢ P(z) because of (2.4).

Next we shall show that P~1(y) is open in X for each y € X. Note
that

P ly)={ze X:3tecT(x),({ty—g()) € —intC(x)}.

We shall show that (P~!(y))¢ is closed. Let (z))xer be anet in (P~1(y))*
= X \ P~!(y) converging to Z € X. Since z) € (P~!(y))¢, we have

(T(zx),y = g(zx)) € F\ ~int C(zx) = W(z»).

Therefore (tx,y — g(za)) € W(xy) for all t\ € T(zy). Let 5 € T(Z) be
arbitrarily fixed. Since T is lower semicontinuous, we get a net (s))aer
such that sy € T'(x)) converging to 5. Hence we have

(sx,y = g(zr)) = (5,9 — 9(7)) € (T(@),y — 9(2))

because L(F, F') is endowed with the topology of compact convergence.
Also (5,y — g(Z)) € W(Z) by the closedness of the graph of W. Thus

5,y —9(z)) e W(z) = F\ —-int C(%).
Since § € T(Z) is arbitrary, we have
(T(2),y — 9(2)) S W(z) = F \ ~int O(%);

so that Z € (P~1(y))% and hence P~!(y) is open in X. This shows
that the condition (4) of Lemma 1 is also satisfied. The rest of the
hypotheses of Lemma 1 are also satisfied so that there exists Z € X such
that ¢ € clA(&) and A(£) N P(&) = 0. Therefore we have & € clA(%)
and

(T(2),z—g(2)) C F\ —~intC(z) for every = € A(Z).

d

REMARK 3. In contrast to Theorem 1, we need the lower semiconti-
nuity on 7" and the monotone type assumption (1.3) to obtain a strong
solution for (GVQVI) in Theorem 3; however, we do need neither the
compactness of 7'(x) nor the upper semicontinuity on 7. Observe that
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every solution in Theorem 3 is much more stronger than a strong solu-
tion.

Next we give an example in which Theorem 3 can be applied, but
the corresponding results in [2, 5, 6] and related existence theorems on
compact settings are not applicable.

EXAMPLE 2. Let E=F =R, X =(0,2], and L(E,F) = E*, C(x) =
[0,00), g(x) = =z for each z € X. Now we consider the following
(GVQVI) problem for multifunctions

1
Az) = [0,1—§m), for each z € X;
1 1 1
—Zr = - if <zx<l1
T(z) := [mgzget gl Osesl
(-1, 1), if 1<z<2

Then it is easy to see that T is lower semicontinuous on X. Also, the
condition (2.4) is automatically satisfied so that the whole assumptions
of Theorem 3 are satisfied. Therefore, we can obtain the strong solu-
tion Z = 0 € X such that £ € clA(Z) and (T(Z),z — g(z)) > 0 for
every ¢ € A(Z). However, T is neither pseudomonotone on X nor up-
per semicontinuous on X. Hence the previous results in [2, 5, 6] are
not available. When T is single-valued, we can obtain the single-valued
version of Theorem 3, which is comparable to Theorem 1 in [6] as follows:

COROLLARY 2. (cf. [6, Theorem 1]) Let X be a nonempty compact
convex subset of a Hausdorff topological vector space E and let F' be
a Hausdorff topological vector space. Let T : X — L(E,F) be a
continuous function, where L(E,F) is equipped with the topology of
compact convergence. Let C' : X — 2F be a multifunction such that
for each x € X, C(z) is a convex cone in F with —intC(z) # 0 and
C(z) # F. Suppose that g : X — X is continuous and A : X — 2% is
a multifunction such that each A(z) is nonempty convex, each A™'(y)
is open in X and cl A : X — 2% is upper semicontinuous. Furthermore,
assume that the multifunction W : X — 2F, Wz = F\ (—int C(z)) is
closed, that is, the graph Gr(W) of W is closed in X x F and

(T(x),z — g(z)) ¢ —int C(x) for each z € X.
Then there exists a point £ € X such that
& €clA(z) and (T(2),z—g(2)) ¢ —intC(Z) for every x € A(L).

Finally, as another consequence of Theorem 2, we obtain the follow-
ing.
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THEOREM 4. Let E be a locally convex Hausdorff topological vector
space, X be a nonempty convex subset of E and D be a nonempty
compact subset of X. Let T : X — 2" be upper semicontinuous from
the relative topology on X to the topology of compact convergence on E*
such that each T(x) is nonempty compact convex and T(X) is contained
in a compact subset of E*. Suppose that g : X — D is continuous such
that

(2.5) inf (w,g(x)—2z) < 0 forallx € X,
weT(z)

and A : X — 2P is a multifunction such that each A(x) is nonempty
convex, each A~'(y) is open in X, and cl A : X — 2P is upper semicon-
tinuous.

Then there exist £ € D and w € T(&) such that
(1) & € clA(z),
(2) (w,g(2)—=z) < 0 forall z€ A(Z).

ProoF. Putting F =R, C(z) = [0,00) and W(z) = [0, 00) for each
x € X, we can easily check that all the assumptions of Theorem 2 are
satisfied. Indeed, define P : X — 2P by

Pl)={yeD: inf (w,g(z)—y) >0} forallze X.
weT(x)

Also observe that (2.5) does correspond to (2.3) of Theorem 2. Then by
Theorem 2, there exists £ € D such that & € ¢l A(Z) and A(2)NP(Z) = 0.
Hence & € cl A(%), and

inf (w,g(z)—y) < 0 forally e A(Z).
weT (&)

We now define f: A(Z) x T(Z) - R by

fly,w) == (w,g(Z) —y) for each (z,w) € A(Z) x T(%).
Note that for each fixed y € A(z), w — f(y,w) is continuous and
affine, and for each w € T(2), y — f(y,w) is affine. Thus, by Kneser’s

minimax theorem [7], we have

inf  sup (w,g9(Z)—y)= sup inf (w,9()—vy) < 0.
’wET((i‘)yeA(a";)< ( ) > yEA(i)wET(aAc)< ( ) >
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Since T(Z) is compact, there exists @ € T(Z) such that

sup (w,g(%) —y) = inf sup (w,g(¢)—y) < 0.
TEA(%) weT(2) ye A(s)

Therefore (1, g(Z) —y) <0 for all y € A(Z). O

REMARK 4. Let us compare the conditions imposed on T between
Theorem 4 above and [6, Theorem 3]. The continuity of multifunction
T in [6, Theorem 3] is weakened to be upper semicontinuous in Theorem
4. However, the condition that T(X) is contained in a compact set is
assumed. Of course, if X is compact, clearly T'(X) is compact because T
is upper semicontinuous. In this case, Theorem 4 is a strict generaliza-
tion of [6, Theorem 3] without assuming the lower semicontinuity of T'.
In the meantime, the proof of Theorem 4 can serve as a simpler one for
[6, Theorem 3] in compact settings. Indeed, they adopted an auxiliary
lemma [4, Lemma 3] concerning continuity of marginal function to show
that P~*(y) is open for each y € D. However, this step is redundant in
Theorem 4 because it is enough to check whether all the assumptions of
Theorem 2 are satisfied.
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