Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).
References
- P.N. Anh, H.T.C. Thach and J.K. Kim, Proximal-like subgradient methods for solving multi-valued variational inequalities, Nonlinear Funct. Anal. Appl, 25(3) (2020), 437-451, https://doi.org/10.22771/nfaa.2020.25.03.03
- Q.H. Ansari, E. Kobis and J.C. Yao, Vector Variational Inequalities and Vector Optimization International Publishing AG, Switzerland, (2018).
- A.S. Antipin, M. Jacimovic and N. Mijajlovic, Extragradient method for solving quasi-variational inequalities, Optimization, 67(1) (2018), 103-112. https://doi.org/10.1080/02331934.2017.1384477
- C. Baiocchi and A. Capelo, Variational and Quasi Variational Inequalities, J. Wiley and Sons, New York, London, (1984).
- M. Balaj, Stampacchia variational inequality with weak convex mappings, A Journal of Mathematical Programming and Operations Research, 67 (2018), 1571-1577.
- J. Crank, Free and Moving Boundary Value Problems, Clarendon press, Oxford, U.K, (1984).
- A.L. Dontchev and T. Zolezzi, Well Posed Optimization Problems, Lecture Notes in Mathematics, Springer Verlag, Berlin, Germany, 1993.
- G. Fichera, Problemi elastostatici con uincoli unilatesali it problemadi signorini con ambigue condizioni al contorno, Atti. Acad. Naz. Lincei, Mem cl. Acta Mat. Nature Sez. La, 7 (1963-1964), 91-140.
- R. Glowinski, J. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North Holland, New York, (1981).
- J. Hadamard, Sur les problemes aux derivees partielles et leur signiication physique, Princeton Univ. Bull., 13 (1902), 49-52.
- G. Hartmann and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math., 115 (1966), 271-310. https://doi.org/10.1007/BF02392210
- R. Hu, Equivalence results of well-posedness for split variational-hemivariational inequalities, North Holland, J. Nonlinear Convex Anal. 20 (2019), 447-459.
- X.X. Huang, Extended and strongly extended well-posedness of set valued optimization problems, Math Methods Oper. Res. 53 (2001), 101-116. https://doi.org/10.1007/s001860000100
- X.X. Huang and X.Q. Yang, Generalized Levitin-Polyak well-posedness in constrained optimization, SIAM J. Optim, 17 (2006), 243-258. https://doi.org/10.1137/040614943
- N. Kikuchi and J.T. Oden, Contact Problems in Elasticity, SIAM, (1987).
- J.K. Kim, Sensitivity analysis for general nonlinear nonvex set-valued variational inequalities in Banach spaces, J. of Comput. Anal. Appl., 22(2) (2017), 327-335,
- J.K. Kim, Salahuddin and W.H. Lim, Solutions of general variational inequality problems in Banach spaces, Linear and Nonlinear Anal., 6(3) (2020), 333-345.
- J.K. Kim, P.N. Anh and T.T.H. Anh and N.D. Hien, Projection methods for solving the variational inequalities involving unrelated nonexpansive mappings, J. Nonlinear and Convex Anal., 21(11) (2020), 2517-2537.
- J.K. Kim and Salahuddin, Local sharp vector variational type inequality and optimization problems, Mathematics,8(10):1844, (2020), 1-10. https://doi.org/10.3390/math8101844
- J.K. Kim and Salahuddin, System of hierarchical nonlinear mixed variational inequalities, Nonlinear Funct. Anal. and Appl., 24(2) (2019), 207-220.
- D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
- R. Larsen, Functional Analysis, Marcel Dekker, Inc. New York, (1973).
- E.S. Levitin and B.T. Polyak, Convergence of minimizing sequence in conditional extremum problems, Sov. Math. Dokl. 7 (1966), 764-767.
- R. Luccheti and F. Patrone, A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities, Numer. Funct. Anal.Optim., 3 (1981), 461-476. https://doi.org/10.1080/01630568108816100
- R. Luccheti and F. Patrone, Some properties of well posed variational equalities governed by linear operators, Numer. Funct. Anal.Optim., 5 (1982-1983), 349-361. https://doi.org/10.1080/01630568308816145
- S.N. Mishra, P.K. Das and S.K. Mishra, On generalized harmonic vector variational inequalities using HC*- condition, Nonlinear Funct. Anal. Appl, 24(3) (2019), 639-649, https://doi.org/10.22771/nfaa.2019.24.03.14
- M.A. Noor, On a class of variational inequalities, J. Math Anal. Appl., 128 (1987), 138-155. https://doi.org/10.1016/0022-247x(87)90221-6
- M.A. Noor, Well-posed variational inequalities, J. Appl. Math and Computing Vol., 11 (2003), 165-172. https://doi.org/10.1007/BF02935729
- A.H. Siddiqi, Q.H. Ansari and M.F. Khan Variational-like inequalities for multivalued maps, Indian Journal of Pure and Applied Mathematics, 30 (1999), 161-166.
- M. Sofonea and Y.B. Xiao,Tykonov Well-posedness of elliptic variationalhemivariational inequalities, Electron. J. Differ. Equ. 64 (2018), 1-19.
- M. Sofonea and Y.B. Xiao, On the well-posedness in the sense of Tykhonov, Journal of Optimization Theory and Applications 183 (2019), 139-157. https://doi.org/10.1007/s10957-019-01549-0
- A.N. Tykhonov, On the stability of functional optimization problems, USSR, Comput. Math. Math. Phys. 6 (1966), 28-33. https://doi.org/10.1016/0041-5553(66)90003-6
- Y.M. Wang, Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems, J. Nonlinear Sci. App.9 (2016), 1178-1192. https://doi.org/10.22436/jnsa.009.03.44
- G. Wang, S.S. Chang, Salahuddin and J.A Liu, Generalized vector variational inequalities and applications, PanAmerican Mathematical Journal, 26 (2016), 77-88.