DOI QR코드

DOI QR Code

ON OPTIMAL SOLUTIONS OF WELL-POSED PROBLEMS AND VARIATIONAL INEQUALITIES

  • Ram, Tirth (Department of Mathematics, University of Jammu) ;
  • Kim, Jong Kyu (Department of Mathematics Education, Kyungnam University) ;
  • Kour, Ravdeep (Department of Mathematics, University of Jammu)
  • Received : 2021.05.15
  • Accepted : 2021.08.15
  • Published : 2021.12.15

Abstract

In this paper, we study well-posed problems and variational inequalities in locally convex Hausdorff topological vector spaces. The necessary and sufficient conditions are obtained for the existence of solutions of variational inequality problems and quasi variational inequalities even when the underlying set K is not convex. In certain cases, solutions obtained are not unique. Moreover, counter examples are also presented for the authenticity of the main results.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).

References

  1. P.N. Anh, H.T.C. Thach and J.K. Kim, Proximal-like subgradient methods for solving multi-valued variational inequalities, Nonlinear Funct. Anal. Appl, 25(3) (2020), 437-451, https://doi.org/10.22771/nfaa.2020.25.03.03
  2. Q.H. Ansari, E. Kobis and J.C. Yao, Vector Variational Inequalities and Vector Optimization International Publishing AG, Switzerland, (2018).
  3. A.S. Antipin, M. Jacimovic and N. Mijajlovic, Extragradient method for solving quasi-variational inequalities, Optimization, 67(1) (2018), 103-112. https://doi.org/10.1080/02331934.2017.1384477
  4. C. Baiocchi and A. Capelo, Variational and Quasi Variational Inequalities, J. Wiley and Sons, New York, London, (1984).
  5. M. Balaj, Stampacchia variational inequality with weak convex mappings, A Journal of Mathematical Programming and Operations Research, 67 (2018), 1571-1577.
  6. J. Crank, Free and Moving Boundary Value Problems, Clarendon press, Oxford, U.K, (1984).
  7. A.L. Dontchev and T. Zolezzi, Well Posed Optimization Problems, Lecture Notes in Mathematics, Springer Verlag, Berlin, Germany, 1993.
  8. G. Fichera, Problemi elastostatici con uincoli unilatesali it problemadi signorini con ambigue condizioni al contorno, Atti. Acad. Naz. Lincei, Mem cl. Acta Mat. Nature Sez. La, 7 (1963-1964), 91-140.
  9. R. Glowinski, J. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North Holland, New York, (1981).
  10. J. Hadamard, Sur les problemes aux derivees partielles et leur signiication physique, Princeton Univ. Bull., 13 (1902), 49-52.
  11. G. Hartmann and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math., 115 (1966), 271-310. https://doi.org/10.1007/BF02392210
  12. R. Hu, Equivalence results of well-posedness for split variational-hemivariational inequalities, North Holland, J. Nonlinear Convex Anal. 20 (2019), 447-459.
  13. X.X. Huang, Extended and strongly extended well-posedness of set valued optimization problems, Math Methods Oper. Res. 53 (2001), 101-116. https://doi.org/10.1007/s001860000100
  14. X.X. Huang and X.Q. Yang, Generalized Levitin-Polyak well-posedness in constrained optimization, SIAM J. Optim, 17 (2006), 243-258. https://doi.org/10.1137/040614943
  15. N. Kikuchi and J.T. Oden, Contact Problems in Elasticity, SIAM, (1987).
  16. J.K. Kim, Sensitivity analysis for general nonlinear nonvex set-valued variational inequalities in Banach spaces, J. of Comput. Anal. Appl., 22(2) (2017), 327-335,
  17. J.K. Kim, Salahuddin and W.H. Lim, Solutions of general variational inequality problems in Banach spaces, Linear and Nonlinear Anal., 6(3) (2020), 333-345.
  18. J.K. Kim, P.N. Anh and T.T.H. Anh and N.D. Hien, Projection methods for solving the variational inequalities involving unrelated nonexpansive mappings, J. Nonlinear and Convex Anal., 21(11) (2020), 2517-2537.
  19. J.K. Kim and Salahuddin, Local sharp vector variational type inequality and optimization problems, Mathematics,8(10):1844, (2020), 1-10. https://doi.org/10.3390/math8101844
  20. J.K. Kim and Salahuddin, System of hierarchical nonlinear mixed variational inequalities, Nonlinear Funct. Anal. and Appl., 24(2) (2019), 207-220.
  21. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
  22. R. Larsen, Functional Analysis, Marcel Dekker, Inc. New York, (1973).
  23. E.S. Levitin and B.T. Polyak, Convergence of minimizing sequence in conditional extremum problems, Sov. Math. Dokl. 7 (1966), 764-767.
  24. R. Luccheti and F. Patrone, A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities, Numer. Funct. Anal.Optim., 3 (1981), 461-476. https://doi.org/10.1080/01630568108816100
  25. R. Luccheti and F. Patrone, Some properties of well posed variational equalities governed by linear operators, Numer. Funct. Anal.Optim., 5 (1982-1983), 349-361. https://doi.org/10.1080/01630568308816145
  26. S.N. Mishra, P.K. Das and S.K. Mishra, On generalized harmonic vector variational inequalities using HC*- condition, Nonlinear Funct. Anal. Appl, 24(3) (2019), 639-649, https://doi.org/10.22771/nfaa.2019.24.03.14
  27. M.A. Noor, On a class of variational inequalities, J. Math Anal. Appl., 128 (1987), 138-155. https://doi.org/10.1016/0022-247x(87)90221-6
  28. M.A. Noor, Well-posed variational inequalities, J. Appl. Math and Computing Vol., 11 (2003), 165-172. https://doi.org/10.1007/BF02935729
  29. A.H. Siddiqi, Q.H. Ansari and M.F. Khan Variational-like inequalities for multivalued maps, Indian Journal of Pure and Applied Mathematics, 30 (1999), 161-166.
  30. M. Sofonea and Y.B. Xiao,Tykonov Well-posedness of elliptic variationalhemivariational inequalities, Electron. J. Differ. Equ. 64 (2018), 1-19.
  31. M. Sofonea and Y.B. Xiao, On the well-posedness in the sense of Tykhonov, Journal of Optimization Theory and Applications 183 (2019), 139-157. https://doi.org/10.1007/s10957-019-01549-0
  32. A.N. Tykhonov, On the stability of functional optimization problems, USSR, Comput. Math. Math. Phys. 6 (1966), 28-33. https://doi.org/10.1016/0041-5553(66)90003-6
  33. Y.M. Wang, Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems, J. Nonlinear Sci. App.9 (2016), 1178-1192. https://doi.org/10.22436/jnsa.009.03.44
  34. G. Wang, S.S. Chang, Salahuddin and J.A Liu, Generalized vector variational inequalities and applications, PanAmerican Mathematical Journal, 26 (2016), 77-88.