Acknowledgement
The work of first author is supported by the Department of Science and Technology, Government of India, Grant No: SR/WOS-A/PM-34/2019(G).
References
- N. Abdellouahab, B. Tellab and K. Zennir, Existence and stability results of a nonlinear fractional integro-differential equation with integral boundary conditions, Kragujev. J. Math., 46 (2022), 685-699. https://doi.org/10.46793/KgJMat2205.685A
- R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481. https://doi.org/10.1016/j.cnsns.2016.09.006
- R. Almeida, A.B. Malinowska and T. Odzijewicz, Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dyn., 11 (2016), 061017, 11 pages. https://doi.org/10.1115/1.4034432
- A. Ardjouni, H. Boulares and Y. Laskri, Stability in higher-order nonlinear fractional differential equations, Acta et Comment. Univ. Tartu. de Math., 22 (2018), 37-47. https://doi.org/10.12697/ACUTM.2018.22.04
- K. Balachandran and S. Divya, Controllability of nonlinear neutral fractional integrodifferential systems with infinite delay, J. Appl. Nonlinear Dyn., 6 (2017), 333-344. https://doi.org/10.5890/JAND.2017.09.002
- D. Baleanu, G.C. Wu and S.D. Zeng, Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos Soliton Fract., 102 (2017), 99-105. https://doi.org/10.1016/j.chaos.2017.02.007
- A. Ben Makhlouf, D. Boucenna and M.A. Hammami, Existence and stability results for generalized fractional differential equations, Acta Math. Sci., 40B (2020), 141-154. https://doi.org/10.1007/s10473-020-0110-3
- A. Ben Makhlouf and A.M. Nagy, Finite-time stability of linear Caputo-Katugampola fractional-order time delay systems, Asian J. Control, 22 (2020), 297-306. https://doi.org/10.1002/asjc.1880
- A. Boulfoul, B. Tellab, N. Abdellouahab and K. Zennir, Existence and uniqueness results for initial value problem of nonlinear fractional integro-differential equation on an unbounded domain in a weighted Banach space, Math. Methods Appl. Sci., 2020 (2020), 1-12.
- T.A. Burton and B. Zhang, Fractional differential equations and generalizations of Schaefer's and Krasnoselskii's fixed point theorems, Nonlinear Anal., 75 (2012), 6485-6495. https://doi.org/10.1016/j.na.2012.07.022
- C.D. Constantinescu, J.M. Ramirez and W.R. Zhu, An application of fractional differential equations to risk theory, Financ. Stoch., 23 (2019), 1001-1024. https://doi.org/10.1007/s00780-019-00400-8
- F. Ge and C. Kou, Stability analysis by Krasnoselskii's fixed point theorem for nonlinear fractional differential equations, Appl. Math. Comput., 257 (2015), 308-316. https://doi.org/10.1016/j.amc.2014.11.109
- F. Jarada, T. Abdeljawad and C. Baleanua, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619. https://doi.org/10.22436/jnsa.010.05.27
- B. Kamalapriya, K. Balachandran and N. Annapoorani, Existence results for fractional integrodifferential equations, Nonlinear Funct. Anal. Appl., 22(3) (2017), 641-653. https://doi.org/10.22771/NFAA.2017.22.03.12
- B. Kamalapriya, K. Balachandran and N. Annapoorani, Existence results of fractional neutral integrodifferential equations with deviating arguments, Discontinuity, Nonlinearity, Complex., 9 (2020), 277-287. https://doi.org/10.5890/DNC.2020.06.008
- C. Kausika, Stability of higher order nonlinear implicit fractional differential equations by fixed point technique, J. Vib. Test. Syst. Dyn., 5 (2021), 169-180.
- C. Kausika, K. Balachandran and N. Annapoorani, Linearized asymptotic stability of Caputo-Katugampola fractional integro differential equations, Indian J. Ind. Appl. Math., 10 (2019), 217-230. https://doi.org/10.5958/1945-919x.2019.00036.7
- A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- C. Kou, H. Zhou and Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal., 74 (2011), 5975-5986. https://doi.org/10.1016/j.na.2011.05.074
- M.A. Krasnoselskii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl., 10 (1958), 345-409.
- J.T. Machado, V. Kiryakova and F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140-1153. https://doi.org/10.1016/j.cnsns.2010.05.027
- N. Sene, Stability analysis of the generalized fractional differential equations with and without exogenous inputs, J. Nonlinear Sci. Appl., 12 (2019), 562-572. https://doi.org/10.22436/jnsa.012.09.01
- N. Sene and G. Srivastava, Generalized Mittag-Leffler input stability of the fractional differential equations, Symmetry, 11 (2019), 608. https://doi.org/10.3390/sym11050608
- V.E. Tarasov, Fractional integro-differential equations for electromagnetic waves in dielectric media, Theor. Math. Phys., 158 (2009), 355-359. https://doi.org/10.1007/s11232-009-0029-z
- M.D. Tran, V. Ho and H.N. Van, On the stability of fractional differential equations involving generalized Caputo fractional derivative, Math. Probl. Eng., 2020 (2020), Article ID 1680761, 14 pages.