References
- A.B. Abubakar, P. Kumam and A.M. Awwal, Global convergence via descent modified three-term conjugate gradient projection algorithm with applications to signal recovery , Results Appl. Math., 4 (2019), p.100069. https://doi.org/10.1016/j.rinam.2019.100069
- A.B. Abubakar, P. Kumam, M. Malik, P. Chaipunya, and A.H. Ibrahim, A hybrid FR-DY conjugate gradient algorithm for unconstrained optimization with application in portfolio selection, AIMS Mathematics, 6(6) (2021), 6506-6527. https://doi.org/10.3934/math.2021383
- M. Al-Baali, Descent property and global convergence of the Fletcher-Reeves method with inexact line search, IMA J. Numer. Anal., 5(1) (1985), 121-124. https://doi.org/10.1093/imanum/5.1.121
- N. Andrei, An Unconstrained Optimization Test Functions Collection, Adv. Model. Optim., 10(1) (2008), 147-161.
- L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math., 16(1) (1966), 1-3. https://doi.org/10.2140/pjm.1966.16.1
- J. Cao and J. Wu, A conjugate gradient algorithm and its applications in image restoration, Appl. Numer. Math., 152 (2020), 243-252. https://doi.org/10.1016/j.apnum.2019.12.002
- Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10(1) (1999), 177-182. https://doi.org/10.1137/S1052623497318992
- E.D. Dolan and J.J. More, Benchmarking optimization software with performance profiles, Math. Progr., 91(2) (2002), 201-213. https://doi.org/10.1007/s101070100263
- R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients, The Comput. J., 2 (1964), 149-154. https://doi.org/10.1093/comjnl/7.2.149
- R. Fletcher, Practical methods of optimization, Wiley Interscience John Wiley and Sons, New York, USA, 1987.
- J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim., 2(1) (1992), 21-42. https://doi.org/10.1137/0802003
- M. Jamil and X.S. Yang, A literature survey of benchmark functions for global optimisation problems, Inter. J. Math. Model. Numer. Optim., 4(2) (2013), 150-194. https://doi.org/10.1504/IJMMNO.2013.055204
- J.K. Liu, Y.M. Feng and L.M. Zou, A spectral conjugate gradient method for solving large-scale unconstrained optimization, Comput. Math. Appl., 77(3) (2019), 731-739. https://doi.org/10.1016/j.camwa.2018.10.002
- M. Malik, S.S. Abas, M. Mamat, Sukono and I.S. Mohammed, A new hybrid conjugate gradient method with global convergence properties, Inter. J. Advan. Sci. Techn., 29(5) (2020), 199-210.
- M. Malik, M. Mamat, S.S. Abas and Sukono, Convergence analysis of a new coefficient conjugate gradient method under exact line search, Inter. J. Advan. Sci. Techn., 29(5) (2020), 187-198.
- M. Malik, M. Mamat, S.S. Abas, I.M. Sulaiman and Sukono, A new coefficient of the conjugate gradient method with the sufficient descent condition and global convergence properties, Engineering Letters, 28(3) (2020), 704-714.
- M. Malik, M. Mamat, S.S. Abas, I.M. Sulaiman and Sukono, A new spectral conjugate gradient method with descent condition and global convergence property for unconstrained optimization, J. Math. Comput. Sci., 10(5) (2020), 2053-2069.
- M. Malik, M. Mamat, S.S. Abas, I.M. Sulaiman and Sukono, A new modification of NPRP conjugate gradient method for unconstrained optimization, Advan. Math.: Scientific J., 9(7) (2020), 4955-4970. https://doi.org/10.37418/amsj.9.7.61
- M. Malik, M. Mamat, S.S. Abas, I.M. Sulaiman and Sukono, Performance analysis of new spectral and hybrid conjugate gradient methods for solving unconstrained optimization problems, IAENG Inter. J. Comput. Sci., 48(1) (2021), 66-79.
- P. Mtagulwa and P. Kaelo, An efficient modified PRP-FR hybrid conjugate gradient method for solving unconstrained optimization problems, Appl. Numer. Math.,, 145 (2019), 111-120. https://doi.org/10.1016/j.apnum.2019.06.003
- J. Nocedal and S.J. Wright, Numerical Optimization, Springer, New York, 2000.
- E. Polak, Algorithms and Consistent Approximations, Springer, Berlin, 1997.
- E. Polak and G. Ribiere,Note sur la convergence de m'ethodes de directions conjugu'ees, ESAIM: Math. Model. Numer. Anal.-Mod'elisation Math'ematique et Analyse Numerique, 3 (1969), 35-43.
- R. Pytlak, Conjugate gradient algorithms in nonconvex optimization, Springer Science & Business Media, 89, 2008.
- B.T. Polyak, The conjugate gradient method in extremal problems, USSR Comput. Math. Math. Phy., 9(4) (1969), 94-112. https://doi.org/10.1016/0041-5553(69)90035-4
- M. Rivaie, M. Mamat and A. Abashar, A new class of nonlinear conjugate gradient coefficients with exact and inexact line searches, Appl. Math. Comput., 268 (2015), 1152-1163. https://doi.org/10.1016/j.amc.2015.07.019
- M. Rivaie, M. Mamat, L.W. June and I. Mohd, A new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput., 218(22) (2012), 11323-11332. https://doi.org/10.1016/j.amc.2012.05.030
- S. Roman, Introduction to the mathematics of finance: from risk management to options pricing, Springer Science & Business Media, 2004.
- Z.J. Shi and J. Shen, Convergence of PRP method with new nonmonotone line search, Applied Math. Comput., 181(1) (2006), 423-431. https://doi.org/10.1016/j.amc.2005.12.064
- I. M. Sulaiman, M. Mamat, M.Y. Waziri, U.A. Yakubu and M. Malik, The Performance Analysis of a New Modification of Conjugate Gradient Parameter for Unconstrained Optimization Models, Math. Statistics, 9(1) (2021), 16-23. https://doi.org/10.13189/ms.2021.090103
- Z. Wang, P. Li, X. Li and H. Pham, A Modified Three-Term Type CD Conjugate Gradient Algorithm for Unconstrained Optimization Problems, Math. Prob. Engin., 2020 (2020), Article ID 4381515.
- M.Y. Waziri, K. Ahmed and J. Sabi'u, A family of Hager-Zhang conjugate gradient methods for system of monotone nonlinear equations, Appl. Math. Comput., 361 (2019), 645-660. https://doi.org/10.1016/j.amc.2019.06.012
- Z. Wei, S. Yao and L. Liu, The convergence properties of some new conjugate gradient methods, Appl. Math. Comput., 183(2) (2006), 1341-1350. https://doi.org/10.1016/j.amc.2006.05.150
- P. Wolfe, Convergence conditions for ascent methods, SIAM review, 11(2) (1969), 226-235. https://doi.org/10.1137/1011036
- P. Wolfe, Convergence conditions for ascent methods. II: Some corrections, SIAM review, 13(2) (1971), 185-188. https://doi.org/10.1137/1013035
- K. Yang, J. Geng-Hui, Q. Qu, H.F. Peng and X.W. Gao, A new modified conjugate gradient method to identify thermal conductivity of transient non-homogeneous problems based on radial integration boundary element method, Inter. J. Heat and Mass Transfer, 133 (2019), 669-676. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.145
- S. Yao, Q. Feng, L. Li and J. Xu, A class of globally convergent three-term Dai-Liao conjugate gradient methods, Appl. Numer. Math., 151 (2020), 354-366. https://doi.org/10.1016/j.apnum.2019.12.026
- O.O.O. Yousif, The convergence properties of RMIL+ conjugate gradient method under the strong Wolfe line search, Appl. Math. Comput., 367 (2020), p.124777. https://doi.org/10.1016/j.amc.2019.124777
- G. Yuan, T. Li and W. Hu, A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems, Appl. Numer. Math., 147 (2020), 129-141. https://doi.org/10.1016/j.apnum.2019.08.022
- Y. Yuan and W.Y. Sun, Optimization Theory and Methods, Science Press, Beijing, 1997.
- L. Zhang, An improved Wei-Yao-Liu nonlinear conjugate gradient method for optimization computation, Appl. Math. Comput., 215(6) (2009), 2269-2274. https://doi.org/10.1016/j.amc.2009.08.016
- Z. Zhu, D. Zhang and S. Wang, Two modified DY conjugate gradient methods for unconstrained optimization problems, Appl. Math. Comput., 373 (2020), p.125004. https://doi.org/10.1016/j.amc.2019.125004
- G. Zoutendijk, Nonlinear programming, computational methods, Integer and nonlinear programming, 1970.