• Title/Summary/Keyword: quasi-metric spaces

Search Result 27, Processing Time 0.026 seconds

FIXED AND PERIODIC POINT THEOREMS IN QUASI-METRIC SPACES

  • Cho, Seong-Hoon;Lee, Jee-Won
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.1027-1035
    • /
    • 2011
  • In this paper, we introduce the concept of generalized weak q-contractivity for multivalued maps defined on quasi-metric spaces. A new fixed point theorem for these maps is established. The convergene of iterate schem of the form $x_n+1\;{\in}\;Fx_n$ is investigated. And a new periodic point theorem for weakly q-contractive self maps of quasi-metric spaces is proved.

CONVERGENCE THEOREMS OF MIXED TYPE IMPLICIT ITERATION FOR NONLINEAR MAPPINGS IN CONVEX METRIC SPACES

  • Kyung Soo, Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.903-920
    • /
    • 2022
  • In this paper, we propose and study an implicit iteration process for a finite family of total asymptotically quasi-nonexpansive mappings and a finite family of asymptotically quasi-nonexpansive mappings in the intermediate sense in convex metric spaces and establish some strong convergence results. Also, we give some applications of our result in the setting of convex metric spaces. The results of this paper are generalizations, extensions and improvements of several corresponding results.

FIXED POINT THEOREMS FOR SET-VALUED MAPS IN QUASI-METRIC SPACES

  • Cho, Seong-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.599-608
    • /
    • 2010
  • In this paper, we introduce the concept of generalized weak contractivity for set-valued maps defined on quasi metric spaces. We analyze the existence of fixed points for generalized weakly contractive set-valued maps. And we have Nadler's fixed point theorem and Banach's fixed point theorem in quasi metric spaces. We investigate the convergene of iterate schem of the form $x_{n+1}{\in}Fx_n$ with error estimates.

CONVERGENCE OF A NEW MULTISTEP ITERATION IN CONVEX CONE METRIC SPACES

  • Gunduz, Birol
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this paper, we propose a new multistep iteration for a finite family of asymptotically quasi-nonexpansive mappings in convex cone metric spaces. Then we show that our iteration converges to a common fixed point of this class of mappings under suitable conditions. Our result generalizes the corresponding result of Lee [5] from the closed convex subset of a convex cone metric space to whole space.

QUASI-ISOMETRIC AND WEAKLY QUASISYMMETRIC MAPS BETWEEN LOCALLY COMPACT NON-COMPLETE METRIC SPACES

  • Wang, Xiantao;Zhou, Qingshan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.967-970
    • /
    • 2018
  • The aim of this paper is to show that there exists a weakly quasisymmetric homeomorphism $f:(X,d){\rightarrow}(Y,d^{\prime})$ between two locally compact non-complete metric spaces such that $f:(X,d_h){\rightarrow}(Y,d^{\prime}_h)$ is not quasi-isometric, where dh denotes the Gromov hyperbolic metric with respect to the metric d introduced by Ibragimov in 2011. This result shows that the answer to the related question asked by Ibragimov in 2013 is negative.

FIXED POINT THEOREMS IN ORDERED DUALISTIC PARTIAL METRIC SPACES

  • Arshad, Muhammad;Nazam, Muhammad;Beg, Ismat
    • Korean Journal of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.169-179
    • /
    • 2016
  • In this article, we introduce the concept of ordered dualistic partial metric spaces and establish an order relation on quasi dualistic partial metric spaces. Later on, using this order relation, we prove xed point theorems for single and multivalued mappings. We support our results with some illustrative examples.

FIXED POINT THEOREMS IN QUASI-METRIC SPACES

  • Abdelkarim Kari;Mohamed Rossafi;Jung Rye Lee
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.311-335
    • /
    • 2023
  • Fixed point theory is the center of focus for many mathematicians from last few decades. A lot of generalizations of the Banach contraction principle have been established. In this paper, we introduce the concepts of 𝜃-contraction and 𝜃-𝜑-contraction in quasi-metric spaces to study the existence of the fixed point for them.

On the Hyers-Ulam Stability of Polynomial Equations in Dislocated Quasi-metric Spaces

  • Liu, Yishi;Li, Yongjin
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.767-779
    • /
    • 2020
  • This paper primarily discusses and proves the Hyers-Ulam stability of three types of polynomial equations: xn+a1x+a0 = 0, anxn+⋯+a1x+a0 = 0, and the infinite series equation: ${\sum\limits_{i=0}^{\infty}}\;a_ix^i=0$, in dislocated quasi-metric spaces under certain conditions by constructing contraction mappings and using fixed-point methods. We present an example to illustrate that the Hyers-Ulam stability of polynomial equations in dislocated quasi-metric spaces do not work when the constant term is not equal to zero.

COMMON FIXED POINT THEOREMS IN THE SETTING OF EXTENDED QUASI b-METRIC SPACES UNDER EXTENDED A-CONTRACTION MAPPINGS

  • Amina-Zahra Rezazgui;Wasfi Shatanawi;Abdalla Ahmad Tallafha
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.251-263
    • /
    • 2023
  • In the setting of extended quasi b-metric spaces, we introduce a new concept called "extended A-contraction". We then use our concept to prove a common fixed point result for a pair of self mappings under a set of conditions. Also, we provide the concepts of extended B-contraction and extended R-contraction. We then establish a common fixed point under these new contractions. Our results generalize many existing result of fixed point in metric spaces. Furthermore, we give an example to illustrate and support our result.