DOI QR코드

DOI QR Code

EXISTENCE OF A SOLUTION OF THE INTEGRAL EQUATIONS ON TRIPLED QUASI-METRIC SPACES WITH APPLICATIONS

  • Received : 2023.12.07
  • Accepted : 2024.01.18
  • Published : 2024.05.31

Abstract

In this paper we study a tripled quasi-metric with new fixed point theorems around β-implicit contractions in tripled quasi-metric spaces. We give an example on a solution of a integral equations.

Keywords

References

  1. R.P. Agarwal, E. Karapnar & A.F. Roldan-Lopez-de-Hierro: Fixed point theorems in quasimetric spaces and applications to multidimensional Fixed point theorems on G-metric spaces. J. Nonlinear Convex Anal. 16 (2015), no. 9, 1787-1816. https://doi.org/10.1007/978-3-319-24082-4-11
  2. M.U. Ali, T. Kamran & E. Karapnar: On (α-𝜓-𝜂)-contractive multivalued mappings. Fixed Point Theory Appl. 2014, Article ID 7, 8, pp. 2014. https://doi.org/10.1186/1687-1812-2014-7
  3. A. Aliouche & V. Popa: General common fixed point theorems for occasionally weakly compatible hybrid mappings and applications. Novi Sad. J. Math. 39 (2009), no. 1, 89-109.
  4. M.A. Alghamdi & E. Karapnar: G-β-𝜓-contractive-type mappings and related fixed point theorems. J. Inequal. Appl. 2013, Article ID 70, 16, pp. 2013. https://doi.org/10.1186/1029-z42x-2013-70
  5. M.A. Alghamdi, E. Karapnar: G-β-𝜓-contractive type mappings in G-metric spaces. Fixed Point Theory Appl. 2013, Article ID 123, 17, pp. 2013. https://doi.org/10.1187-1812-2013-123 https://doi.org/10.1187-1812-2013-123
  6. V. Berinde: Approximating fixed points of implicit almost contractions. Hacet. J. Math. Stat. (2012) 41, no. 1, 93-102.
  7. V. Berinde & F. Vetro: Common fixed points of mappings satisfying implicit contractive conditions. Fixed Point Theory Appl. 2012, Article ID 105, 8, pp. 2012. https://doi.org/10.1186/1687-1812-2012-105
  8. L.B. Ciric: A generalization of Banach's contraction principle. Proc. Amer. Math. Soc. (1974) 45, no. 2, 267-273. https://doi.org/10.1090/s0002-9939-1974-0356011-2
  9. R.C. Dimri & G. Prasad: Coincidence theorems for comparable generalized nonlinear contractions in ordered partial metric spaces. Comm. Korean Math. Soc. 32 (2017), no. 2, 375-387. https://doi.org/10.4134/CKMS.c160127
  10. M. Imdad, S. Kumar & M.S. Khan: Remarks on some fixed point theorems satisfying implicit relations. Rad. Math. 11 (2012), no. 1, 135-143. https://doi.org/MR1971330-135-143
  11. M. Jleli, E. Karapnar & B. Samet: Best proximity points for generalized alpha-psi-proximal contractive type mappings. J. Appl. Math. 2013, Article ID 534127, 10, pp. 2013. https://doi.org/10.1155/2013/534127
  12. M. Jleli, E. Karapnar & B. Samet: Fixed point results for α-𝜓λ-contractions on gauge spaces and applications. Abstr. Appl. Anal. 2013, Article ID 730825, 7, pp. 2013. https://doi.org/10.1155/2013/730825
  13. M. Jleli & B. Samet: Remarks on G metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, Article ID 210, 7, pp. 2012. https://doi.org/10.1186/1687-1812-2012-210
  14. E. Karapinar & B. Samet: Generalized α-𝜓-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, Article ID 793486, 17, pp. 2012. https://doi.org/10.1155/2012-793486
  15. E. Karapinar: Fixed point theory for cyclic weak ϕ-contraction. Appl. Math. Lett. 24 (2011), 822-825. https://doi.org/10.1016/j.aml.2010.12.016
  16. V. La Rosa & P. Vetro: Common fixed points for α-𝜓-φ-contractions in generalized metric spaces. Nonlinear Anal. Model. Control 19, no. 1, 43-54. https://doi.org/10.1186/1029-242x-2014-439
  17. B. Mohammadi, Sh. Rezapour & N. Shahzad: Some results on fixed points of α-𝜓-Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, Article ID 24, 10, pp. 2013. https://doi.org/10.1186/1687-1812-2013-24
  18. Z. Mustafa & B. Sims: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7 (2006), 289-297. https://ds.doi.org/10.22075/ijnaa.2022.27489.3619
  19. M. Pacurar & I.A. Rus: Fixed point theory for cyclic φ-contractions. Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), no. 34, 1181-1187. https://doi.org/10.1016/j.na.2009.08.002
  20. V. Popa: Fixed point theorems for implicit contractive mappings. Stud. Cercet. Stiint., Ser. Mat. Univ. Bacau 7 (1997), 129-133.
  21. V. Popa: Some fixed point theorems for compatible mappings satisfying an implicit relation. Demonstr. Math. 32 (1999), 157-163. https://doi.org/10.1515/dema-199-0117
  22. V. Popa: A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation. Filomat 19 (2005), 45-51. https://doi.org/10.2298/FIL0519045p
  23. V. Popa & A.M. Patriciu: A general fixed point theorem for mappings satisfying an ϕ-implicit relation in complete G-metric spaces. Gazi Univ. J. Science 25 (2012), no. 2, 403-408. https://doi.org/10.35219/ann-ugal-mah-phys-mee.2018.2004
  24. V. Popa & A.M. Patriciu: A General fixed point theorem for pairs of weakly com-patible mappings in G-metric spaces. J. Nonlinear Sci. App. 5 (2012), no. 2, 151-160. https://dx.doi.org/10.22436/jnsa.005.02.08
  25. G. Prasad & H'useyin Iik: On solution of boundary value problem via week contractions. J. Fun. 2022, Article ID 6799205. pp. 2022. https://doi.org/10.1155/2022/6799205
  26. G. Prasad: Coincidence points of relational �contractions and an application. Afr. Mat. 32 (2021), 1475-1490. https://doi.org/10.1007/s13370-021-00913-6
  27. G. Prasad & R.C. Dimri: Fixed point theorems via comparable mappings in ordered metric spaces. J. Anal. 27 (2019), no. 4, 1139-1150. https://doi.org/10.1007/s41478-019-00165-5
  28. S. Reich & A.J. Zaslawski: Well-posedness of fixed point problems. Far East J. Math. Sci., Spec. Vol., Part III (2001), 393-401. https://doi.org/10.1007/s11784-018-0538-1
  29. B. Samet, C. Vetro & P. Vetro: Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), no. 4, 2154-2165. https://doi.org/10.1016/j.na.2011.100014