DOI QR코드

DOI QR Code

FIXED POINT THEOREMS FOR SET-VALUED MAPS IN QUASI-METRIC SPACES

  • Received : 2010.04.05
  • Accepted : 2010.11.09
  • Published : 2010.12.30

Abstract

In this paper, we introduce the concept of generalized weak contractivity for set-valued maps defined on quasi metric spaces. We analyze the existence of fixed points for generalized weakly contractive set-valued maps. And we have Nadler's fixed point theorem and Banach's fixed point theorem in quasi metric spaces. We investigate the convergene of iterate schem of the form $x_{n+1}{\in}Fx_n$ with error estimates.

Keywords

References

  1. Ya. I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, in:I. Gohberg and Yu Lyubich(Eds.), New Results in OperatorTheory, in: Advances and Appl. 98, Birkhauser, Basel, (1997), 7-22.
  2. S. Al-Homidan, Q. H. Ansari and J. C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Analysis 69 (2008), 126-139. https://doi.org/10.1016/j.na.2007.05.004
  3. J. S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl. 248 (2003), 690-697.
  4. I. Beg and M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed point theory and Applications, (2006), 1-7.
  5. G. Berthiaume, On quasi-uniformities in hyperspaces, Proc. Amer. Math. Soc. 66 (1977), 335-343. https://doi.org/10.1090/S0002-9939-1977-0482620-9
  6. D. W. Boyd and J. S. Wong, On nonlinear contractions, Proc. Amer. Soc. 20 (1969), 458-464. https://doi.org/10.1090/S0002-9939-1969-0239559-9
  7. H. P. A. Kunzi, Nonsymmetric topology, Bolyai Soc. Math. Studies 4, Topology, Szekszard(1993), Hungary, Budapest, 1995, 303-338.
  8. H. P. A. Kunzi and C. Ryser, The Bourbaki quasi-uniformity, Topology Proc. 20 (1995), 161-183.
  9. S. Reich, Some fixed point problems, Atti. Accad. Naz. Lincei 57 (1974), 194-198.
  10. I. L. Reilly, P. V. Subrahmanyam and M. K. Vamanamurthy, Cauchy sequences in quasi-psedo-metric spaces, Monatsh. Math. 93 (1982), 127-140. https://doi.org/10.1007/BF01301400
  11. B. E. Rhoades, Some Theorems on weakly contractive maps, Nonlinear Analysis 47 (2001), 2683-2693. https://doi.org/10.1016/S0362-546X(01)00388-1
  12. S. Romaguera, Left K-completeness in quasi-metric spaces, Math. Nachr. 157 (1992), 15-23.
  13. M. Schellekens, Complexity spaces revisited, Extended Abstract, 8th Prague Topological Symp., 1996, 337-348.