DOI QR코드

DOI QR Code

AN ALGORITHM FOR CHECKING EXTREMALITY OF ENTANGLED STATES WITH POSITIVE PARTIAL TRANSPOSES

  • Ha, Kil-Chan (Department of Applied Mathematics Sejong University)
  • Received : 2010.05.06
  • Accepted : 2010.08.12
  • Published : 2010.12.30

Abstract

We characterize extreme rays of the cone $\mathbb{T}$ of all positive semi-definite block matrices whose partial transposes are also positive semi-definite. We also construct an algorithm checking whether a given PPTES generates an extreme ray in the cone $\mathbb{T}$ or not. Using this algorithm, we give an example of $4{\otimes}4$ PPT entangle state of the type (5, 5), which generates extreme ray of the cone $\mathbb{T}$.

Keywords

Acknowledgement

Supported by : Sejong University

References

  1. M.-D. Choi, Positive linear maps, Operator Algebras and Applications (Kingston, 1980), pp. 583-590, Proc. Sympos. Pure Math. Vol 38. Part 2, Amer. Math. Soc., 1982.
  2. L. Clarisse, Construction of bound entangled edge states with special ranks, Phys. Lett. A 359 (2006), 603-607. https://doi.org/10.1016/j.physleta.2006.07.045
  3. K.-C. Ha, Atomic positive linear maps in matrix algebras, Publ. RIMS, Kyoto Univ., 34 (1998), 591-599. https://doi.org/10.2977/prims/1195144425
  4. K.-C. Ha, S.-H. Kye and Y. S. Park, Entanglements with positive partial trans- poses arising from indecomposable positive linear maps, Phys. Lett. A 313 (2003), 163-174. https://doi.org/10.1016/S0375-9601(03)00733-3
  5. K.-C. Ha and S.-H. Kye, Construction of entangled states with positive partial transposes based on indecomposable positive linear maps, Phys. Lett. A 325 (2004), 315-323. https://doi.org/10.1016/j.physleta.2004.04.008
  6. K.-C. Ha and S.-H. Kye, Construction of 3­$\otimes$3 entangled edge states with positive partial transposes, J. Phys. A: Math. Gen. 38 (2005), 9039-9050. https://doi.org/10.1088/0305-4470/38/41/014
  7. K.-C. Ha, Comment on: "Construction of bound entangled edge states", Phys. Lett. A 361, (2007), 515-519. https://doi.org/10.1016/j.physleta.2006.11.009
  8. K.-C. Ha, Comment on: "Extreme rays in 3$\otimes$3 entangled edge states with pos- itive partial transposes", Phys. Lett. A 373 (2009), 2298-2300. https://doi.org/10.1016/j.physleta.2009.04.072
  9. M. Horodecki, P. Horodecki and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A 223 (1996), 1-8. https://doi.org/10.1016/S0375-9601(96)00706-2
  10. M. Horodecki, P. Horodecki and R. Horodecki, Inseparable two spin-1/2 density matrices can be distilled to a singlet form, Phys. Rev. Lett. 78 (1997), 574-577. https://doi.org/10.1103/PhysRevLett.78.574
  11. R. Horodecki, P. Horodecki and M. Horodecki, K. Horodecki, Quantum entan- glement, Rev. Mod. Phys. 81 (2009), 865-942. https://doi.org/10.1103/RevModPhys.81.865
  12. W. C. Kim and S.-H. Kye, Extreme rays in 3$\otimes$ 3 entangled edge states with positive partial transposes, Phys. Lett. A 369 (2007), 16-22 https://doi.org/10.1016/j.physleta.2007.04.062
  13. J. M. Leinass, J. Myrheim and E. Ovrum, Extreme points of the set of den- sity matrices with positive partial transpose, Phys. Rev. A 76 (2007), 034304- 034307 https://doi.org/10.1103/PhysRevA.76.034304
  14. A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77 (1996), 1413-1415. https://doi.org/10.1103/PhysRevLett.77.1413
  15. A. G. Robertson, Automorphisms of spin factors and the decomposition of pos- itive maps, Quart. J. Math. Oxford 34 (1983), no. 2, 87-96 https://doi.org/10.1093/qmath/34.1.87
  16. A. Sanpera, D. Bru$\beta$ and M. Lewenstein, Schmidt number witnesses and bound entanglement, Phys. Rev. A 63 (2001), 050301. https://doi.org/10.1103/PhysRevA.63.050301
  17. S. L. Woronowicz, Positive maps of low dimensional matrix algebras, Rep. Math. Phys. 10 (1976), 165-183. https://doi.org/10.1016/0034-4877(76)90038-0