DOI QR코드

DOI QR Code

COMMON FIXED POINT THEOREMS IN THE SETTING OF EXTENDED QUASI b-METRIC SPACES UNDER EXTENDED A-CONTRACTION MAPPINGS

  • Amina-Zahra Rezazgui (Department of Mathematics, Faculty of Science, University of Jordan) ;
  • Wasfi Shatanawi (Department of Mathematics and General Sciences, Prince Sultan University, Department of Mathematics, Faculty of Science, Hashemite University) ;
  • Abdalla Ahmad Tallafha (Department of Mathematics, Faculty of Science, University of Jordan)
  • Received : 2022.06.01
  • Accepted : 2022.07.24
  • Published : 2023.03.03

Abstract

In the setting of extended quasi b-metric spaces, we introduce a new concept called "extended A-contraction". We then use our concept to prove a common fixed point result for a pair of self mappings under a set of conditions. Also, we provide the concepts of extended B-contraction and extended R-contraction. We then establish a common fixed point under these new contractions. Our results generalize many existing result of fixed point in metric spaces. Furthermore, we give an example to illustrate and support our result.

Keywords

References

  1. M. Abdul Mannan, M. Rahman, H. Akter, N. Nahar and S. Mondal, A study of Banach fixed point theorem and it's application, Amer. J. Comput. Math., 11 (2021), 157-174.  https://doi.org/10.4236/ajcm.2021.112011
  2. K. Abodayeh, T. Qawasmeh, W. Shatanawi and A. Tallafha, ϕ-contraction and some fixed point results via modified ω-distance mappings in the frame of complete quasi metric spaces and applications, Inter. J. Electrical Comput. Eng., 10 (2020), 3839-3853.  https://doi.org/10.11591/ijece.v10i4.pp3839-3853
  3. G. Akinbo, M.O. Olatinwo and A.O. Bosede, A note on A-contractions and common fixed points, Acta Universitatis Apulensis, 23 (2010), 91-98. 
  4. M. Akram and Nosheen, Some fixed point theorems of AG-contraction mappings in G-metric space, J. Faculty Eng. Tech., 20 (2013), 1-11. 
  5. M. Akram and A.A. Siddiqui, A fixed point theorem for A-contraction on a class of generalized metric spaces, Kor. J. Math. Sci., 10 (2003), 1-15. 
  6. M. Akram, A.A. Zafar and A.A. Siddiqui, A general class of contractions: A-contractions, Novi Sad J. Math., 38(1) (2008), 25-33. 
  7. M. Akram, A.A. Zafar and A.A. Siddiqui, Common fixed point theorems for self maps of a generalized metric space satisfying A-contraction type condition, Int. J. Math. Anal., 5 (2011), 757-763. 
  8. R. Jain, H.K. Nashine and J.K. Kim, Positive solutions for a nonlinear matrix equation using fixed point results in extended Branciari b-distance spaces, Nonlinear Funct. Anal. Appl., 27(4) (2022), 709-730  https://doi.org/10.22771/NFAA.2022.27.04.02
  9. H. Kerim, W. Shatanawi and A. Tallafha, Common fixed point theorem for set-valued maps on modular b-gauge spaces, Palestine J. Math., 11(3) (2022), 626-635. 
  10. A. Mukheimer, N. Mlaiki, K. Abodayeh and W. Shatanawi, New theorems on extended b-metric spaces under new contractions, Nonlinear Anal.: Modelling and Control, 24 (2019), 870-883. 
  11. B. Nurwahyu, Fixed point theorems for cyclic weakly contraction mappings in dislocated quasi extended b-metric space, J. Funct. Spaces, 2019 (2019), 1-10.  https://doi.org/10.1155/2019/1367879
  12. I. Nuseir, W. Shatanawi, I. Abu-Irwaq and A. Bataihah, Nonlinear contractions and fixed point theorems with modified ω-distance mappings in complete quasi metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 5342-5350.  https://doi.org/10.22436/jnsa.010.10.20
  13. T. Qawasmeh, W. Shatanawi, A. Bataihah and A. Tallafha, Fixed point results and (α, β)-triangular admissibility in the frame of complete extended b-metric spaces and application, U.P.B. Sci. Bull., Series A, 23 (2021), 113-124. 
  14. A. Rabaiah, A. Tallafha and W. Shatanawi, Common fixed point results for mappings under nonlinear contraction of cyclic form in b-metric spaces, Nonlinear Funct. Anal. Appl., 26(2) (2021), 289-301  https://doi.org/10.22771/NFAA.2021.26.02.04
  15. S. Reich, Kannan's fixed point theorem, Boll. Un. Math. Ital., 4 (1971), 1-11. 
  16. W. Shatanawi, Some fixed point results for a generalized ψ-weak contraction mappings in orbitally metric spaces, Chaos Solitons and Fractals, 45(4) (2012), 520-526.  https://doi.org/10.1016/j.chaos.2012.01.015
  17. W. Shatanawi, On w-compatible mappings and common coupled coincidence point in cone metric spaces, Appl. Math. Letter, 25(6) (2012), 925-931.  https://doi.org/10.1016/j.aml.2011.10.037
  18. W. Shatanawi, Fixed and common fixed point for mapping satisfying some nonlinear contraction in b-metric spaces, J. Math. Anal., 7 (2016), 1-12. 
  19. W. Shatanawi, Fixed and common fixed point theorems in frame of quasi metric spaces based on ultra distance functions, Nonlinear Anal.: Modelling and Control, 23 (2018), 724-748.  https://doi.org/10.15388/NA.2018.5.6
  20. W. Shatanawi, K. Abodayeh and A. Mukheimer, Some fixed point theorems in extended b-metric spaces, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar., 80 (2018), 71-78. 
  21. W. Shatanawi, A. Bataihah and A. Pitea, Fixed and common fixed point results for cyclic mappings of Ω-distance, J. Nonlinear Sci. Appl., 9 (2016), 727-735.  https://doi.org/10.22436/jnsa.009.03.02
  22. W. Shatanawi, T. Qawasmeh, A. Bataihah and A. Tallafha., New contractions and some fixed point results with application based on extended quasi b-metric spaces, U.P.B. Sci. Bull. Series A, 83 (2021), 39-48. 
  23. W. Shatanawi, V.C. Rajic, S. Radenovic and A. Al-Rawashdeh, Mizoguchi-Takahashi-type theorems in tvs-cone metric spaces, Fixed Point Theory Appl., 2012: 106 (2012). 
  24. A. Tallafha, T. Qawasmeh, N. Tahat, W. Shatanawi, A. Bataihah, and K. Abodayeh, Some coincidence point and some fixed point result in ordred metric spaces and application, Dyna. Syst. Appl., 30 (2021), 143-156. 
  25. V. Vairaperumal, J.C.P. Raj, J.M. Joseph and M. Maruda, Common fixed point theorems under rational contractions in complex valued extended b-metric spaces, Nonlinear Funct. Anal. Appl., 26(4) (2021), 685-700.  https://doi.org/10.22771/NFAA.2021.26.04.03
  26. T. Zamfirescu, Fixed point theorems in Metric spaces, Archiv der Mathematik, 23 (1972) 292-298. https://doi.org/10.1007/BF01304884