• 제목/요약/키워드: quadratic fields

검색결과 117건 처리시간 0.02초

A BASIS OF THE SPACE OF MEROMORPHIC QUADRATIC DIFFERENTIALS ON RIEMANN SURFACES

  • Keum, J.H.;Lee, M.K.
    • 대한수학회지
    • /
    • 제35권1호
    • /
    • pp.127-134
    • /
    • 1998
  • It is proved [6] that there exists a basis of $L^\Gamma$ (the space of meromorphic vector fields on a Riemann surface, holomorphic away from two fixed points) represented by the vector fields which have the expected zero or pole order at the two points. In this paper, we carry out the same task for the quadratic differentials. More precisely, we compute a basis of $Q^\Gamma$ (the sapce of meromorphic quadratic differentials on a Riemann surface, holomorphic away from two fixed points). This basis consists of the quadratic differentials which have the expected zero or pole order at the two points. Furthermore, we show that $Q^\Gamma$ has a Lie algebra structure which is induced from the Krichever-Novikov algebra $L^\Gamma$.

  • PDF

GENERATION OF RING CLASS FIELDS BY ETA-QUOTIENTS

  • Koo, Ja Kyung;Shin, Dong Hwa;Yoon, Dong Sung
    • 대한수학회지
    • /
    • 제55권1호
    • /
    • pp.131-146
    • /
    • 2018
  • We generate ring class fields of imaginary quadratic fields in terms of the special values of certain eta-quotients, which are related to the relative norms of Siegel-Ramachandra invariants. These give us minimal polynomials with relatively small coefficients from which we are able to solve certain quadratic Diophantine equations concerning non-convenient numbers.

8-RANKS OF CLASS GROUPS OF IMAGINARY QUADRATIC NUMBER FIELDS AND THEIR DENSITIES

  • Jung, Hwan-Yup;Yue, Qin
    • 대한수학회지
    • /
    • 제48권6호
    • /
    • pp.1249-1268
    • /
    • 2011
  • For imaginary quadratic number fields F = $\mathbb{Q}(\sqrt{{\varepsilon}p_1{\ldots}p_{t-1}})$, where ${\varepsilon}{\in}${-1,-2} and distinct primes $p_i{\equiv}1$ mod 4, we give condition of 8-ranks of class groups C(F) of F equal to 1 or 2 provided that 4-ranks of C(F) are at most equal to 2. Especially for F = $\mathbb{Q}(\sqrt{{\varepsilon}p_1p_2)$, we compute densities of 8-ranks of C(F) equal to 1 or 2 in all such imaginary quadratic fields F. The results are stated in terms of congruence relation of $p_i$ modulo $2^n$, the quartic residue symbol $(\frac{p_1}{p_2})4$ and binary quadratic forms such as $p_2^{h+(2_{p_1})/4}=x^2-2p_1y^2$, where $h+(2p_1)$ is the narrow class number of $\mathbb{Q}(\sqrt{2p_1})$. The results are also very useful for numerical computations.

MEAN VALUES OF DERIVATIVES OF QUADRATIC PRIME DIRICHLET L-FUNCTIONS IN FUNCTION FIELDS

  • Jung, Hwanyup
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.635-648
    • /
    • 2022
  • In this paper, we establish an asymptotic formula for mean value of $L^{(k)}({\frac{1}{2}},\;{\chi}_P)$ averaging over ℙ2g+1 and over ℙ2g+2 as g → ∞ in odd characteristic. We also give an asymptotic formula for mean value of $L^{(k)}({\frac{1}{2}},\;{\chi}_u)$ averaging over 𝓘g+1 and over 𝓕g+1 as g → ∞ in even characteristic.

GENERATION OF RAY CLASS FIELDS OF IMAGINARY QUADRATIC FIELDS

  • Jung, Ho Yun
    • 충청수학회지
    • /
    • 제34권4호
    • /
    • pp.317-326
    • /
    • 2021
  • Let K be an imaginary quadratic field other than ℚ(${\sqrt{-1}}$) and ℚ(${\sqrt{-3}}$), and let 𝒪K be its ring of integers. Let N be a positive integer such that N = 5 or N ≥ 7. In this paper, we generate the ray class field modulo N𝒪K over K by using a single x-coordinate of an elliptic curve with complex multiplication by 𝒪K.

MEAN VALUES OF DERIVATIVES OF L-FUNCTIONS IN FUNCTION FIELDS: IV

  • Andrade, Julio;Jung, Hwanyup
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1529-1547
    • /
    • 2021
  • In this series, we investigate the calculation of mean values of derivatives of Dirichlet L-functions in function fields using the analogue of the approximate functional equation and the Riemann Hypothesis for curves over finite fields. The present paper generalizes the results obtained in the first paper. For µ ≥ 1 an integer, we compute the mean value of the µ-th derivative of quadratic Dirichlet L-functions over the rational function field. We obtain the full polynomial in the asymptotic formulae for these mean values where we can see the arithmetic dependence of the lower order terms that appears in the asymptotic expansion.