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A BASIS OF THE SPACE OF
MEROMORPHIC QUADRATIC DIFFERENTIALS
ON RIEMANN SURFACES

J. H. KEuM aND M. K. LEE

ABSTRACT. It is proved [6] that there exists a basis of LT (the space
of meromorphic vector fields on a Riemann surface, holomorphic
away from two fixed points) represented by the vector fields which
have the expected zero or pole order at the two points. In this paper,
we carry out the same task for the quadratic differentials. More pre-
cisely, we compute a basis of QT {the space of meromorphic quadratic
differentials on a Riemann surface, holomorphic away from two fixed
points). This basis consists of the quadratic differentials which have
the expected zero or pole order at the two points. Furthermore, we
show that Q' has a Lie algebra structure which is induced from the
Krichever-Novikov algebra L.

0. Introduction

The Riemann-Roch Theorem is central in the theory of compact Rie-
mann surfaces. It tells us there are how many linearly independent mero-
morphic functions satisfying certain restrictions cn their poles. More-
over, we can translate the results on the existence of meromorphic func-
tions to the existence of holomorphic sections of a certain line bundle.

A special choice of basis for meromorphic secticns of line bundles, in
which all poles lie at the punctures, allows the decomposition of ﬁeld
operators (which are sections of bundles) into modes analogous to the
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standard decomposition on the sphere. Many of the calculational tech-
niques used on the sphere can be reproduced for higher genus surfaces
in this basis.

A very interesting development in this direction can be found in three
papers by Krichever and Novikov [3, 4, 6]. The starting point of this
paper is the construction of the Krichever-Novikov algebra.

To state the result we have to introduce 2-Weierstrag points. Let I’
be a compact Riemann surface with genus ¢ > 2. For a point P € [’
to be a 2-Weierstra point it is equivalent that there exists a quadratic
differential with a zero of order > 3¢ — 3 at the pcint P (The classical
Weierstra3 points are with regard to differentials. There the condition
is : there exists a holomorphic differential with a zero of order > ¢ at
the point P ). There are only finitely many 2-Weierstra points on I’
[1,p.84].

THEOREM 1 (3,4,6). Let Py be two fixed points on a Riemann surface
" with genus g > 2, none of them is a 2-Weierstra3 point. Let L' be the
space of meromorphic vector fields on the Riemann surface, holomorphic
away from the points P.. Then there exists a bacis of L' represented
by the vector fields e; which are defined and uniquely determined up to
a constant by the followng behavicur near Py :

+ Fi-gotl, d
s e Az (L-+ O P
¢ a; z4 (zf)>(t)zi
where gy = gq, i takes on integral values (i = --- ,--1,0,1,---) for even
¢ and half-integral values (i = - -- ,w%, %, -++) for odd g. and z, (resp.

z_) the local coordinate around P, (resp. P.).

With the Lie bracket of vector tields, the space Ll carries a natural
structure of a Lie algebra. This algebra is called the Krichever-Novikov
algebra (see section 3).

In this paper, we carry out the same task for the quadratic differen-
tials. More precisely, we prove the following.

THEOREM 2. Let P, be two fixed points on a Riemann surface I' with
genus g > 2. none of them is a 2-Weierstraj3 point. Let Q' be the space
of meromorphic quadratic differentials holomorphic away from the points
Py. Then there exists a basis {E;} of Q' with the following behaviour
near Py:

E,o= et 2P0 (14 O(ze)(d2y)?, P e,

1
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where gy and z. are the same as in Theorem 1.

The space of Q' has a Lie algebra structure vhich is induced from
the Krichever-Novikov algebra LT

1. Preliminary

The following result follows from Riemann-Roch Theorem.

PROPOSITION 3. Let X be a compact Riemann surface of genus g
and L. be a holomorphic line bundle on X. Then
=0, degl <0
dimH(X, L)< > 1 —g+degl, 0<dsl < 29 — 1
=1—-g+degl, deg . > 2¢ — 1.

Suppose I' is a compact Riemann surface with genus ¢ > 2. Let p; be
points and n; be integers (¢ = 1,2,.. . k). We set

-,

where L, is the line bundle which has a section with exactly one zero
at the point p; and vanishes nowhere else.

LEMMA 4. Suppose L is a line bundle on the Riemann surface T and
M = L ® R. Then the space H'(I', M) of holomorphic sections of M is
isomorphic to the space of meromcrphic sections of the bundle I, which
are holomorphic outside the points p, and have at most a pole of order n,
at the point p; (have a zero of order at least —niifn; <0.0=1,2,... k).

LEMMA 5. Let D be a divisor with dim HYT,Cp) =~. Then
v < dim HO(F7 Op,p) <~ +1.

LEMMA 6. For a positive integer n, if a point P € I' is not a 2-
Weierstraj3 point then
(3¢ — 3) —mn, Hn<3g-3

dim H(I", O, -npP) =
1m ([, Ok P) {0, #n>3g-3
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where 2K is the divisor for the quadratic differentials of I'.
Inparticular

dim HY(T, O_g.np) =71 — (3g — 3)ifn > 3g — 3

Proof. dim H%(T', Oqx _,,p) is the dimension of the space of quadratic
differentials having a zero of order > n at P. Since the point P is not
2-Weierstra/? point,

dim H(T', Oy np) = 0 for n > 30 -3
Now
deg(2K —nP) = 2(29 —2) —n.
If n < 2¢ — 3 then deg(2K — nP) > 29 — 1, hence
dim H'(T, Oy _np) = 1 - g+ deg(2K —nP)
= l—g+4g—4-—n
= (3g-3)—n (29)
By Lemma 5, the dimension will drop by one fromr n = 2g — 3 to n =
3g — 3
n 0 e 2g—=3 -+ 3g -3
dimH® 3¢g—-3 --- g 0 0
Hence

dim HY(T", Oyx _np) = (39 - 3) —=n for 2 <3g—3.

2. Proof of Theorem 2

Let us take the bundles
M, =w? @ Lpy* o Ly ",

where w? = w ® w is the bundle of quadratic differentials.
Then

degM;, = 2(29—2)+(i=go+2)+(=i—go+2)
= g < 2¢g—1
By Proposition 3,
dim H(I', M;) > | — g + deg M; = 1.
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We will show that
dim HY(T, M;) = 1.
and the corresponding (up to a scalar multiple) unique meromorphic
section of w? has exactly the required zero or ploe order at P, (see
Lemma 4). Let i — gy +2 = —n, r.e. —j — go+2==3g+4+n.
Then
HT, Osk —p. (3, a-myp. ) = HYI', M,).

To prove this, we use the Riemann Roch theorem

dimHO(F,OQA'-nl).—(39—4‘71)11) - dimHO(F;C)wKinP,+(3g-~47n)1’,)
= 1-g+dezgh, = 1.

Case 1. n > 3g - 3.
If n = 3¢ — 3, then

dim (T, Oz _(3,-3p_1p. ) — dim HYT, O g Gg-myp—p ) = L.
By Lemma 6,
dim H°(T, Ook—(3g-3p.) = 0
hence
dim HYT, Ok 3g-3p.) = —g+ 1+ deg(—K + (3g — 3)P,)
= 0.
So
dim H(T,O_y , 3, syp_p. ) = 1.
Now we get
dim H(T, Ogx _35-3yp. ) =

Since dim H(T, Osk—3g-3yp.) = U, the generator f, of this space has
the right pole order at P_. Since dim HO(I", O, @Bg-2p_+r.) = 0, the
generator f; has the right zero order at P, .
Let me deduce this for n = 3¢ — 2. The proof for the general case is
essentially the same and goes by induction.
Since

dim HT, Ok 3y 5p.—ap ) = 1.

By Riemann-Roch we get

dim HO(F, Ok (3g-3yp. w2 ) = ).
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Let f; be as above and let f be a second element, such that fi, f is a
basis of this vector space. We can solve the equation

af® (P + cfB (P =0, ¢ £0.

fa = afi + cf is a vector field such that fi, fy is agan a basis. f; has at
least a zero of order 3g — 2 at P.. We do not want f> to have a higher
order zero. For this we have to make sure that

aff (P ) + e fPTI(P.) £ 0

by choosing P. suitable. Now f;, generates HYT, Ogx—3g-2yp.2p.). It
has the right zero order at P, . If we assume that it has not the full pole
order 2 at P_ it would be an element of H(T, Ogx_ 34-3)p..+p ), hence it
would be a multiple of f; in contradiction to its construction.

Case 2. 0 <n <3¢ —4.

If we take P_ general enough, then
((x)) dim H(T, Ok _np.xp. ) =39—3—n—kfor 0 <k <3g—-3—n.
So we obtain

dim HO(Fa O?K—nl’v~(3g—4—n)P_.) = L.
The generator again has the minimal zero order at P.. If it has a zero
order at P, more than the expected, it would be an element of
HO(Fa O2K—(n+ 1} Py~ (3g—4—n)P_ )

But this space is zero by (*). The argument for P_ is the same.

Now we get

dim H°(I', M;) = 1

and the corresponding meromorphic section is giver by quadratic differ-
entials E; with the following behaviour near Pi:

B, = ¢E2F (14 O(zs))(d2s)?, cFe€C,

3. A Lie Algebra Structure of Q"

PROPOSITION 7. For the basis e, of the vector ficlds LY, the space Lt
is go-graded algebra with respect to the Lie brackei
90
(€5, €;] = Z (f itk (fj e,

k=—go
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where the sum is over the integers for even g and half integers for odd
g.

Proof. We know that the vector field given by the Lie bracket can
again be developed in these e/s. To get its coefficients, we have to
calculate its order of the poles and zeros at the point P.. We start with
P;. e, and e; may be given locally as above. Then we calculate (o] = 1):

e el = 2V gﬂ”(l-’rO(Z*))dé) { go+](1+0( D)3 0 }

z., 0z,

oz, 4

2 O ) {1 00 ) |

(l‘] 90)— goH((,/. )Jr ()(@))__

Oz,
The order of the zero of this vector field is > (i + ./ — gg) — go + 1. Hence
only e,.s with
>t + 7~ go)
are involved.
At the point P_, we calculate

leie;] = a7z N1 4 O(Z_))d(z {a 277140z ))g—}

; L : 0

—a;z "M 14+ Oz ))B(ZT {a;z’z‘ ol 4 O(z))a—}
. —(i~7+g0)—go+1 7
= a;ayz TR~ ) + Oz ))a;—
The order of the pole is < (¢ + j -~ go) + go — 1. Hence es with

r< {1+ 7+ go)
are involved.
Combining these two facts, we get
9
[(i,j,(’j] = Z (';}6i4'j_k, Cf] e C.

k=-go

This Lie algebra is called the Krichever-Novikov algebra. In our proof
we are even able to give the exact formula for the coefficients in the
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extremal cases.

B=j—i, e = (i)

Using the Lie algebra structure of L*, one can define a Lie algebra
structure on the space Q' as follows ;

PROPOSITION 8. The space QU is a gp-graded algebra with respect
to the Lie bracket

EzaE Z d H]—Akv df] € ((:7
k=—go
where the sum is over the integers for even g and half integers for odd
g.
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