Acknowledgement
This research was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(No. 2020R1F1A1A01073055).
References
- D. A. Cox, Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex Multiplication, 2nd edition, Pure Appl. Math., (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013.
- G. Frei, F. Lemmermeyer and P. J. Roquette, Emil Artin and Helmut Hassethe Correspondence 1923-1958, Comm App Math Comp Sci., 5 (2014) Springer, Heidelberg.
- G. J. Janusz, Algebraic Number Fields, 2nd ed., Grad. Studies in Math. 7, Amer. Math. Soc., Providence, RI, 1996.
- H. Y. Jung, J. K. Koo and D. H. Shin, Ray class invariants over imaginary quadratic fields, Tohoku Math. J. (2) 63 (2011), no. 3, 413-426. https://doi.org/10.2748/tmj/1318338949
- H. Y. Jung, J. K. Koo and D. H. Shin, Generation of ray class fields modulo 2, 3, 4 or 6 by using the Weber function, J. Korean Math. Soc., 55 (2018), no. 2, 343-372. https://doi.org/10.4134/JKMS.j170220
- H. Y. Jung, J. K. Koo and D. H. Shin, Class fields generated by coordinates of elliptic curves, submitted. https://arxiv.org/abs/2111.01021
- J. K. Koo and D. H. Shin, Construction of class fields over imaginary quadratic fields using y-coordinates of elliptic curves, J. Korean Math. Soc., 50 (2013), no. 4, 847-864. https://doi.org/10.4134/JKMS.2013.50.4.847
- D. Kubert and S. Lang, Modular Units, Grundlehren der mathematischen Wissenschaften 244, Spinger-Verlag, New York-Berlin, 1981.
- J. K. Koo, D. H. Shin and D. S. Yoon, On a problem of Hasse and Ramachandra, Open Math., 17 (2019), no. 1, 131-140. https://doi.org/10.1515/math-2019-0013
- S. Lang, Elliptic Functions, With an appendix by J. Tate, 2nd ed., Grad. Texts in Math., 112, Spinger-Verlag, New York, 1987.
- K. Ramachandra, Some applications of Kronecker's limit formula, Ann. of Math., (2) 80 (1964), 104-148. https://doi.org/10.2307/1970494
- G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, NJ, 1971.
- J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Grad. Texts in Math., 106, Springer, Dordrecht, 2009.
- P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Adv. Stud. Pure Math., 30, Math. Soc., Japan, Tokyo, 2001.
- J. Sandor, D. S. Mitrinovic and B. Crstici, Handbook of Number Theory I, Springer, Dordrecht, 1995.