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GENERATION OF RAY CLASS FIELDS OF

IMAGINARY QUADRATIC FIELDS

Ho Yun Jung

Abstract. Let K be an imaginary quadratic field other than Q(
√
−1)

and Q(
√
−3), and let OK be its ring of integers. Let N be a positive

integer such that N = 5 or N ≥ 7. In this paper, we generate the
ray class field modulo NOK over K by using a single x-coordinate
of an elliptic curve with complex multiplication by OK .

1. Introduction

Let K be an imaginary quadratic field with ring of integers OK .
Assume that K is different from Q(

√
−1) and Q(

√
−3). For each non-

negative integer n, let EK,n be the elliptic curve with j-invariant j(OK)
given by the Weierstrass equation

EK,n : y2 = 4x3 − JK(JK − 1)

27
C2n
K x− JK(JK − 1)2

272
C3n
K

where

JK =
1

1728
j(OK) and CK = J2

K(JK − 1)3.

Then we have a complex analytic isomorphism of complex Lie groups

C/OK
∼→ EK,n(C) (⊂ P2(C))

z +OK 7→ [xK,n(z) : yK,n(z) : 1]
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with

xK,n(z) = CnK
g2(OK)g3(OK)

∆(OK)
℘(z; OK),

yK,n(z) =

√(
CnK

g2(OK)g3(OK)

∆(OK)

)3

℘′(z; OK).

(See [13, Chapter VI].)
Let HK be the Hilbert class field of K. Furthermore, for a nontrivial

ideal m of OK , let Km be the ray class field of K modulo m. (See [1,
§8] or [3, Chapter V].) Now, let m 6= OK and ω be an element of K
such that ω +OK is a generator of the OK-module m−1OK/OK . As is
well known, xK,n(ω) for such ω are all Galois conjugate over HK ([10,

Theorem 7 and its corollary in Chapter 10]). Set

BK,m =
13
24π
√
|dK |+ 6 ln(22976 Nm)

5
2π
√
|dK | − ln 877383

− 1

6
(∈ R)

where dK (< 0) is the discriminant of K and Nm is the least positive
integer in m. Recently, Jung, Koo and Shin ([6, Theorem 5.2]) proved
that if Km properly contains HK , then

Km = K
(
xK,n(ω)

)
for all n ≥ BK,m,

which would be an answer to a problem of Hasse and Ramachandra on
generation of class fields in terms of the Weber function ([2, p. 91] and
[11, p. 105]).

In this paper, we focus on the special case where m = NOK for a
positive integer N such that N = 5 or N ≥ 7. By utilizing Shimura’s
reciprocity law and some inequalities on special values of meromorphic
modular functions, we shall reduce the bound BK,m of n so that

Km = K(N) = K
(
xK,n(ω)

)
for all n ≥

1
8π
√
|dK |+ 2 ln(4.263N)

5
2π
√
|dK | − ln 877383

− 1

6

(Theorem 5.2). Besides, Koo, Shin and Yoon showed in [9] that

K(N) = K
(
xK, 0(

1
N )
)

or K
(
xK, 0(

2
N )
)

by using the second Kronecker’s limit formula.

2. Fields of modular functions

We shall briefly review some basic properties of Fricke functions and
Siegel functions as modular functions.
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Let H = {τ ∈ C | Im(τ) > 0} be the complex upper half-plane. Let
j be the elliptic modular function on H defined by

j(τ) = 1728
g2(τ)3

∆(τ)
(τ ∈ H).

(See [1, §10.B] or [10, §3.3].) For v =
[
v1 v2

]
∈M1, 2(Q) \M1, 2(Z), let

fv and gv be the Fricke function and the Siegel function on H, respec-
tively, defined as follows :

fv(τ) = −2735
g2(τ)g3(τ)

∆(τ)
℘(z; Zτ + Z),(2.1)

gv(τ) = −eπiv2(v1−1)q
1
2
(v21−v1+

1
6
)

τ (1− qz)
∞∏
n=1

(1− qnτ qz)(1− qnτ q−1z ),(2.2)

where z = v1τ+v2, qτ = e2πiτ and qz = e2πiz. (For the original definition
of gv, one can refer to [8, §2.1]. ) For a positive integer N , let

FN =

{
Q(j) if N = 1,
F1(fv | v ∈ 1

NM1, 2(Z) \M1, 2(Z)) if N ≥ 2.

The field FN is a Galois extension of F1 such that

Gal(FN/F1) ' GL2(Z/NZ)/〈−I2〉.

Moreover, it coincides with the field of meromorphic modular functions
of level N whose Fourier coefficients lie in the Nth cyclotomic field ([12,
Theorem 6.6 and Proposition 6.9]).

Proposition 2.1. Let N ≥ 2 and v ∈ 1
NM1, 2(Z) \M1, 2(Z).

(i) The function g12Nv belongs to FN . It has no zeros and poles on H.
(ii) If u ∈M1, 2(Q) satisfies u ≡ v or −v (mod M1, 2(Z)), then

fu = fv and g12Nu = g12Nv .

(iii) For γ ∈ GL2(Z/NZ)/〈−I2〉 (' Gal(FN/F1)) we have

fγv = fvγ and
(
g12Nv

)γ
= g12Nvγ .

Proof. (i) See [8, Theorem 1.2 in Chapter 2].
(ii) See [1, Lemma 10.4] and [8, pp. 28–29].
(iii) See [12, Theorem 6.6 (2)] and [8, Proposition 1.3 in Chapter 2].
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3. Theory of complex multiplication

In this section, we shall present some consequences of the main the-
orems of complex multiplication and Shimura’s reciprocity law.

Let K be an imaginary quadratic field of discriminant dK . Set

τK =


√
dK
2

if dK ≡ 0 (mod 4),

−1 +
√
dK

2
if dK ≡ 1 (mod 4),

and so OK = ZτK + Z ([1, (7.1)]).

Proposition 3.1. The theory of complex multiplication yields the
following results :

(i) HK = K (j(τK)).
(ii) K(N) = K (f(τK) | f ∈ FN is finite at τK) if N ≥ 2.

(iii) K(N) = HK

(
f[ 0 1

N ](τK)
)

if K 6= Q(
√
−1), Q(

√
−3) and N ≥ 2.

Proof. (i) See [10, Theorem 1 in Chapter 10].
(ii) See [10, Corollary to Theorem 2 in Chapter 10] or [12, Proposition

6.33].
(iii) See [10, Corollary to Theorem 7 in Chapter 10].

Let R(dK) be the set of reduced binary quadratic forms of discrimi-
nant dK , that is, the set of quadratic forms Q(x, y) = aQx

2+bQxy+cQy
2

in Z[x, y] whose coefficients satisfy the following four conditions:

(i) aQ > 0.
(ii) gcd(aQ, bQ, cQ) = 1.
(iii) b2Q − 4aQcQ = dK .

(iv) −aQ < bQ ≤ aQ < cQ or 0 ≤ bQ ≤ aQ = cQ.

Let Qpr = x2 + bKxy + cKy
2 be the principal form in R(dK), namely,

Qpr = x2+bKxy+cKy
2 =


x2 − dK

4
y2 if dK ≡ 0 (mod 4),

x2 + xy +
1− dK

4
y2 if dK ≡ 1 (mod 4).

Note that every nonprincipal reduced form Q satisfies aQ ≥ 2. For each
Q ∈ R(dK), let τQ be the zero of the quadratic polynomial Q(x, 1) lying
in H, that is,

τQ =
−bQ +

√
dK

2aQ
.
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In particular, we see that τQpr = τK . For a positive integer N , let WK,N

be the subgroup of GL2(Z/NZ) given by

WK,N =

{
γ =

[
t− bKs −cKs

s t

]
| s, t ∈ Z/NZ such that γ ∈ GL2(Z/NZ)

}
.

Proposition 3.2 (Shimura’s reciprocity law). Assume that K is dif-
ferent from Q(

√
−1) and Q(

√
−3). Then there is a bijective map

WK,N/〈−I2〉 × R(dK) → Gal(K(N)/K)

(α, Q) 7→
(
f(τK) 7→ fβ(α,Q)(τQ) | f ∈ FN is finite at τK

)
,

where β(α, Q) is a certain element of GL2(Z/NZ)/〈−I2〉 (' Gal(FN/F1)),
such that its restriction to WK,N/〈−I2〉×{Qpr} induces an isomorphism
onto Gal(K(N)/HK).

Proof. See [14, §3 and 6] or [7, Proposition 3.1 and Remark 3.2].

Remark 3.3. Let hK denote the class number of K.

(i) We have hK = [HK : K] = |R(dK)| ([1, Theorems 2.8 and 7.7]).
(ii) If hK ≥ 2, then dK ≤ −15 ([1, Theorem 12.34]).

4. Inequalities on special values of modular functions

We shall introduce and develop some inequalities on special values of
modular functions which are necessary to prove our main theorem.

Throughout this section, we let K be an imaginary quadratic field
other than Q(

√
−1) and Q(

√
−3). Define a function J on H by

J(τ) =
1

1728
j(τ) (τ ∈ H).

Lemma 4.1. If hK ≥ 2 (so, dK ≤ −15), then we get∣∣∣∣ J(τQ)2(J(τQ)− 1)3

J(τK)2(J(τK)− 1)3

∣∣∣∣ < 877383 |qτK |
5
2 (< 1)

for all Q ∈ R(dK) \ {Qpr}.

Proof. See [5, Lemma 6.3 (ii)] and [6, Remark 4.2].

Remark 4.2. Note that CK = J2
K(JK − 1)3 6= 0 ([1, p. 200]). We

obtain by Proposition 3.1 (i), 3.2 for N = 1 and Lemma 4.1 that

HK = K (CnK) for every nonzero integer n

([6, Lemma 4.3]).
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Lemma 4.3. If v ∈ 1
NM1, 2(Z) \M1, 2(Z) for an integer N ≥ 2 and

Q ∈ R(dK) \ {Qpr}, then we have∣∣∣∣∣g[ 0 1
N ](τK)

gv(τQ)

∣∣∣∣∣ < 1.

Proof. See [4, Lemma 3.2 and Remark 3.6].

Lemma 4.4. Let v ∈ M1, 2(Q) \M1, 2(Z), and let τ ∈ H such that

|qτ | ≤ e−π
√
3.

(i) We have

|gv(τ)| < 2.29 |qτ |−
1
24 .

(ii) If v ∈ 1
NM1, 2(Z) \M1, 2(Z) for an integer N ≥ 2, then we obtain

|gv(τ)| > 0.76

N
|qτ |

1
12 .

Proof. See [6, Lemma 5.1].

Lemma 4.5. Let N and t be positive integers such that N ≥ 4 and
2 ≤ t ≤ N − 2. If hK ≥ 2, then we have∣∣∣∣∣ g[ 0 t

N ](τK)2

g[ 0 t+1
N ](τK)g[ 0 t−1

N ](τK)

∣∣∣∣∣ < 2.0002.

Proof. We derive by the definition (2.2) that∣∣∣∣∣ g[ 0 t
N ](τK)2

g[ 0 t+1
N ](τK)g[ 0 t−1

N ](τK)

∣∣∣∣∣
=

∣∣∣∣∣ (1− ζtN )2

(1− ζt+1
N )(1− ζt−1N )

∣∣∣∣∣
×

∣∣∣∣∣
∏∞
n=1(1− qnτKζ

t
N )2(1− qnτKζ

−t
N )2∏∞

n=1(1− qnτKζ
t+1
N )(1− qnτKζ

−t−1
N )(1− qnτKζ

t−1
N )(1− qnτKζ

−t+1
N )

∣∣∣∣∣
≤

sin2 tπ
N

sin (t+1)π
N sin (t−1)π

N

∞∏
n=1

(
1 + rn

1− rn

)4

where r = e−π
√
|dK |



Generation of ray class fields 323

≤
sin2 tπ

N

sin2 tπ
N − sin2 π

N

∞∏
n=1

e12r
n

because r ≤ e−π
√
3 <

1

3
and

1 + x

1− x
< e3x for 0 < x <

1

3

≤
sin2 tπ

N

sin2 tπ
N −

1
2 sin2 tπ

N

e
∑∞
n=1 12r

n

because sin
π

N
=

sin 2π
N

2 cos π
N

≤
sin tπ

N

2 cos π4
=

1√
2

sin
tπ

N

≤ 2e
12e−π

√
15

1−e−π
√
15 since r ≤ e−π

√
15

< 2.0002.

5. Generation of ray class fields

Now, we are ready to prove our main theorem on generation of K(N)

by using a single x-coordinate of an N -torsion point on the elliptic curve
EK,n.

Lemma 5.1. Let u, v ∈M1, 2(Q) \M1, 2(Z) such that

u 6≡ v, −v (mod M1, 2(Z)).

Then we have the relation

(fv − fv)6 =
J2(J − 1)3

39
g6u+vg

6
u−v

g12u g
12
v

.

Proof. See [8, p. 51].

Theorem 5.2. Let K be an imaginary quadratic field other than
Q(
√
−1) and Q(

√
−3), and let N be a positive integer such that N = 5

or N ≥ 7. Let ω be an element of K such that ω+OK is a generator of
the OK-module N−1OK/OK . If n is a nonnegative integer satisfying

(5.1) n ≥
1
8π
√
|dK |+ 2 ln(4.263N)

5
2π
√
|dK | − ln 877383

− 1

6
,

then we have

K(N) = K
(
xK,n(ω)

)
.
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Proof. If hK = 1, then the assertion holds for all n ≥ 0 by the proof
(Case 1) of [6, Proposition 4.5].

Now, we let hK ≥ 2. Since N = 5 or N ≥ 7, there is at least one
integer t such that 2 ≤ t ≤ N − 2 and gcd(N, t) = 1 ([15, §I.1]). Since
each of ω+OK , 1

N +OK and t
N +OK is a generator of the OK-module

N−1OK/OK , the x-coordinates xK,n(ω), xK,n( 1
N ) and xK,n( t

N ) of the

elliptic curve EK,n are all Galois conjugate over HK ([10, Theorem 7
and its corollary in Chapter 10]). Thus we get

(5.2) K
(
xK,n(ω)

)
= K

(
xK,n( 1

N )
)

= K
(
xK,n( t

N )
)

as an intermediate field of the abelian extension K(N)/K. Note further

that xK,n( t
N ) and xK,n( 1

N ) are distinct because t
N 6≡

1
N , −

1
N (mod OK)

([1, Lemma 10.4]).

Suppose on the contrary that xK,n(ω) does not generate K(N) over

K. Then there exists a nonidentity element σ of Gal(K(N)/K) which
leaves xK,n(ω) fixed. Since

K(N) = HK

(
f[ 0 1

N ](τK)
)

by Proposition 3.1 (iii)

= HK

(
CnKf[ 0 1

N ](τK)
)

by Remark 4.2

= HK

(
xK,n( 1

N )
)

by the definition (2.1) and the fact OK = ZτK + Z
= HK

(
xK,n(ω)

)
by (5.2),

we observe that

(5.3) σ 6∈ Gal(K(N)/HK).

Now we derive that

1 =

∣∣∣∣∣∣
(
xK,n( t

N )− xK,n( 1
N )
)σ

xK,n( t
N )− xK,n( 1

N )

∣∣∣∣∣∣
by (5.2) and the fact that σ is the identity on K

(
xK,n(ω)

)
=

∣∣∣∣∣∣
{
J(τK)2n(J(τK)− 1)3n(f[ 0 t

N ](τK)− f[ 0 1
N ](τK))

}σ
J(τK)2n(J(τK)− 1)3n(f[ 0 t

N ](τK)− f[ 0 1
N ](τK))

∣∣∣∣∣∣
by the definition (2.1)
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=

∣∣∣∣ J(τQ)2(J(τQ)− 1)3

J(τK)2(J(τK)− 1)3

∣∣∣∣n
∣∣∣∣∣∣ fu(τQ)− fv(τQ)

f[
0
t
N

](τK)− f[
0

1
N

](τK)

∣∣∣∣∣∣
for some Q ∈ R(dK) \ {Qpr} and u, v ∈ 1

N
M1, 2(Z) \M1, 2(Z)

such that u 6≡ v, −v (mod M1, 2(Z))

by Proposition 2.1 (iii), 3.2 and (5.3)

=

∣∣∣∣ J(τQ)2(J(τQ)− 1)3

J(τK)2(J(τK)− 1)3

∣∣∣∣n+
1
6

∣∣∣∣∣∣∣∣∣∣
(
gu+v(τQ)gu−v(τQ)
gu(τQ)2gv(τQ)2

)
(
g[ 0 t+1

N ](τK)g[ 0 t−1
N ](τK)

g[ 0 t
N ](τK)2g[ 0 1

N ](τK)2

)
∣∣∣∣∣∣∣∣∣∣

by Lemma 5.1

=

∣∣∣∣ J(τQ)2(J(τQ)− 1)3

J(τK)2(J(τK)− 1)3

∣∣∣∣n+
1
6

∣∣∣∣∣ g[ 0 t
N ](τK)2

g[ 0 t+1
N ](τK)g[ 0 t−1

N ](τK)

∣∣∣∣∣
×

∣∣∣∣∣g[ 0 1
N ](τK)

gv(τQ)

∣∣∣∣∣
2

|gu+v(τQ)| |gu−v(τQ)|
∣∣∣∣ 1

gu(τQ)

∣∣∣∣2
<

(
877383|qτK |

5
2

)n+ 1
6 · 2.0002 · 12 ·

(
2.29|qτQ |

− 1
24

)2(0.76

N
|qτQ |

1
12

)−2
by Lemmas 4.1, 4.3, 4.4 and 4.5

≤
(

877383|qτK |
5
2

)n+ 1
6

(4.263N)2|qτQ |
− 1

4

≤
(

877383|qτK |
5
2

)n+ 1
6

(4.263N)2|qτK |
− 1

8

because |qτQ | = |qτK |
1
aQ ≥ |qτK |

1
2

due to the facts |qτK | < 1 and aQ ≥ 2

=
(

877383e−
5
2
π
√
|dK |
)n+ 1

6
(4.263N)2e

1
8
π
√
|dK |.

We then obtain by taking logarithm that

0 <

(
n+

1

6

)(
ln 877383− 5

2
π
√
|dK |

)
+ 2 ln(4.263N) +

1

8
π
√
|dK |,

which contradicts the inequality (5.1) for n.
Therefore we conclude that K(N) = K(xK,n (ω)).
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