• 제목/요약/키워드: maximal and prime ideals

검색결과 35건 처리시간 0.02초

On 2-absorbing Primary Ideals of Commutative Semigroups

  • Mandal, Manasi;Khanra, Biswaranjan
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.425-436
    • /
    • 2022
  • In this paper we introduce the notion of 2-absorbing primary ideals of a commutative semigroup. We establish the relations between 2-absorbing primary ideals and prime, maximal, semiprimary and 2-absorbing ideals. We obtain various characterization theorems for commutative semigroups in which 2-absorbing primary ideals are prime, maximal, semiprimary and 2-absorbing ideals. We also study some other important properties of 2-absorbing primary ideals of a commutative semigroup.

ON WEAK II-REGULARITY AND THE SIMPLICITY OF PRIME FACTOR RINGS

  • Kim, Jin-Yong;Jin, Hai-Lan
    • 대한수학회보
    • /
    • 제44권1호
    • /
    • pp.151-156
    • /
    • 2007
  • A connection between weak ${\pi}-regularity$ and the condition every prime ideal is maximal will be investigated. We prove that a certain 2-primal ring R is weakly ${\pi}-regular$ if and only if every prime ideal is maximal. This result extends several known results nontrivially. Moreover a characterization of minimal prime ideals is also considered.

LOCAL COHOMOLOGY MODULES WHICH ARE SUPPORTED ONLY AT FINITELY MANY MAXIMAL IDEALS

  • Hajikarimi, Alireza
    • 대한수학회지
    • /
    • 제47권3호
    • /
    • pp.633-643
    • /
    • 2010
  • Let a be an ideal of a commutative Noetherian ring R, M a finitely generated R-module and N a weakly Laskerian R-module. We show that if N has finite dimension d, then $Ass_R(H^d_a(N))$ consists of finitely many maximal ideals of R. Also, we find the least integer i, such that $H^i_a$(M, N) is not consisting of finitely many maximal ideals of R.

ON A GENERALIZATION OF RIGHT DUO RINGS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.925-942
    • /
    • 2016
  • We study the structure of rings whose principal right ideals contain a sort of two-sided ideals, introducing right ${\pi}$-duo as a generalization of (weakly) right duo rings. Abelian ${\pi}$-regular rings are ${\pi}$-duo, which is compared with the fact that Abelian regular rings are duo. For a right ${\pi}$-duo ring R, it is shown that every prime ideal of R is maximal if and only if R is a (strongly) ${\pi}$-regular ring with $J(R)=N_*(R)$. This result may be helpful to develop several well-known results related to pm rings (i.e., rings whose prime ideals are maximal). We also extend the right ${\pi}$-duo property to several kinds of ring which have roles in ring theory.

ON STRONGLY 1-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Almahdi, Fuad Ali Ahmed;Bouba, El Mehdi;Koam, Ali N.A.
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1205-1213
    • /
    • 2020
  • Let R be a commutative ring with 1 ≠ 0. In this paper, we introduce a subclass of the class of 1-absorbing primary ideals called the class of strongly 1-absorbing primary ideals. A proper ideal I of R is called strongly 1-absorbing primary if whenever nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈ ${\sqrt{0}}$. Firstly, we investigate basic properties of strongly 1-absorbing primary ideals. Hence, we use strongly 1-absorbing primary ideals to characterize rings with exactly one prime ideal (the UN-rings) and local rings with exactly one non maximal prime ideal. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the prime ideals, the primary ideals and the 1-absorbing primary ideals. In the end of this paper, we give an idea about some strongly 1-absorbing primary ideals of the quotient rings, the polynomial rings, and the power series rings.

THE DIMENSION OF THE MAXIMAL SPECTRUM OF SOME RING EXTENSIONS

  • Rachida, El Khalfaoui;Najib Mahdou
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.983-992
    • /
    • 2023
  • Let A be a ring and 𝓙 = {ideals I of A | J(I) = I}. The Krull dimension of A, written dim A, is the sup of the lengths of chains of prime ideals of A; whereas the dimension of the maximal spectrum, denoted by dim 𝓙A, is the sup of the lengths of chains of prime ideals from 𝓙. Then dim 𝓙A ≤ dim A. In this paper, we will study the dimension of the maximal spectrum of some constructions of rings and we will be interested in the transfer of the property J-Noetherian to ring extensions.

UPPERS TO ZERO IN POLYNOMIAL RINGS WHICH ARE MAXIMAL IDEALS

  • Chang, Gyu Whan
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.525-530
    • /
    • 2015
  • Let D be an integrally closed domain with quotient field K, X be an indeterminate over D, $f=a_0+a_1X+{\cdots}+a_nX^n{\in}D[X]$ be irreducible in K[X], and $Q_f=fK[X]{\cap}D[X]$. In this paper, we show that $Q_f$ is a maximal ideal of D[X] if and only if $(\frac{a_1}{a_0},{\cdots},\frac{a_n}{a_0}){\subseteq}P$ for all nonzero prime ideals P of D; in this case, $Q_f=\frac{1}{a_0}fD[X]$. As a corollary, we have that if D is a Krull domain, then D has infinitely many height-one prime ideals if and only if each maximal ideal of D[X] has height ${\geq}2$.

WEAKLY PRIME LEFT IDEALS IN NEAR-SUBTRACTION SEMIGROUPS

  • Dheena, P.;Kumar, G. Satheesh
    • 대한수학회논문집
    • /
    • 제23권3호
    • /
    • pp.325-331
    • /
    • 2008
  • In this paper we introduce the notion of weakly prime left ideals in near-subtraction semigroups. Equivalent conditions for a left ideal to be weakly prime are obtained. We have also shown that if (M, L) is a weak $m^*$-system and if P is a left ideal which is maximal with respect to containing L and not meeting M, then P is weakly prime.

PRIMENESS AND PRIMITIVITY IN NEAR-RINGS

  • Wendt, Gerhard
    • 대한수학회지
    • /
    • 제58권2호
    • /
    • pp.309-326
    • /
    • 2021
  • In near-ring theory several different types of primitivity exist. These all imply several different types of primeness. In case of near-rings with DCCN most of the types of primeness are known to imply primitivity of a certain kind. We are able to show that also so called 1-prime near-rings imply 1-primitivity. This enables us to classify maximal ideals in near-rings with chain condition with the concept of 1-primeness which leads to further results in the structure theory of near-rings.