DOI QR코드

DOI QR Code

THE DIMENSION OF THE MAXIMAL SPECTRUM OF SOME RING EXTENSIONS

  • Rachida, El Khalfaoui (Mathematical Sciences and Applications Laboratory Department of Mathematics Faculty of Sciences Dhar Al Mahraz) ;
  • Najib Mahdou (Laboratory of Modeling and Mathematical Structures Department of Mathematics Faculty of Science and Technology of Fez Box 2202, University S.M. Ben Abdellah)
  • Received : 2022.11.13
  • Accepted : 2022.12.23
  • Published : 2023.10.31

Abstract

Let A be a ring and 𝓙 = {ideals I of A | J(I) = I}. The Krull dimension of A, written dim A, is the sup of the lengths of chains of prime ideals of A; whereas the dimension of the maximal spectrum, denoted by dim 𝓙A, is the sup of the lengths of chains of prime ideals from 𝓙. Then dim 𝓙A ≤ dim A. In this paper, we will study the dimension of the maximal spectrum of some constructions of rings and we will be interested in the transfer of the property J-Noetherian to ring extensions.

Keywords

Acknowledgement

The authors would like to express their sincere thanks for the referee for his/her helpful suggestions and comments.

References

  1. D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
  2. C. Bakkari, S. Kabbaj, and N. Mahdou, Trivial extensions defined by Prufer conditions, J. Pure Appl. Algebra 214 (2010), no. 1, 53-60. https://doi.org/10.1016/j.jpaa.2009.04.011
  3. M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral domains with special prime spectrums, Canad. J. Math. 29 (1977), no. 4, 722-737. https://doi.org/10.4153/CJM-1977-076-6
  4. M. D'Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507-519. https://doi.org/10.1016/j.jalgebra.2005.12.023
  5. M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
  6. M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
  7. M. D'Anna, C. A. Finocchiaro, and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44 (2016), no. 5, 1836-1851. https://doi.org/10.1080/00927872.2015.1033628
  8. M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/S0219498807002326
  9. M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252. https://doi.org/10.1007/s11512-006-0038-1
  10. S. El Baghdadi, A. Jhilal, and N. Mahdou, On FF-rings, J. Pure Appl. Algebra 216 (2012), no. 1, 71-76. https://doi.org/10.1016/j.jpaa.2011.05.003
  11. S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
  12. A. Grothendieck, Elements de geometrie algebrique, Publ. Inst. Hades Etudes Sci., No. 20 (1964).
  13. S. Hedayat and E. Rostami, A characterization of commutative rings whose maximal ideal spectrum is Noetherian, J. Algebra Appl. 17 (2018), no. 1, 1850003, 8 pp. https://doi.org/10.1142/S0219498818500032
  14. S.-E. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), no. 10, 3937-3953. https://doi.org/10.1081/AGB-200027791
  15. M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1962.
  16. E. Rostami, Decomposition of ideals into pseudo-irreducible ideals in amalgamated algebra along an ideal, J. Mahani Math. Res. Cent. 6 (2017), no. 1, 13-24.