DOI QR코드

DOI QR Code

LOCAL COHOMOLOGY MODULES WHICH ARE SUPPORTED ONLY AT FINITELY MANY MAXIMAL IDEALS

  • Published : 2010.05.01

Abstract

Let a be an ideal of a commutative Noetherian ring R, M a finitely generated R-module and N a weakly Laskerian R-module. We show that if N has finite dimension d, then $Ass_R(H^d_a(N))$ consists of finitely many maximal ideals of R. Also, we find the least integer i, such that $H^i_a$(M, N) is not consisting of finitely many maximal ideals of R.

Keywords

References

  1. M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories, J. Algebra 320 (2008), no. 3, 1275-1287. https://doi.org/10.1016/j.jalgebra.2008.04.002
  2. J. Asadollahi, K. Khashyarmanesh, and Sh. Salarian, On the finiteness properties of the generalized local cohomology modules, Comm. Algebra 30 (2002), no. 2, 859-867. https://doi.org/10.1081/AGB-120013186
  3. J. Asadollahi and P. Schenzel, Cofiniteness of generalized local cohomology modules for principal ideals, preprint.
  4. N. Bourbaki, Commutative Algebra, Chapters 1-7, Elements of Mathematics, Springer-Verlag, Berlin, 1998.
  5. M. Brodmann and R. Y. Sharp, Local Cohomology: an algebraic introduction with geometric applications, Cambridge Univ. Press, 1998.
  6. L. Chu and Z. Tang, On the Artinianness of generalized local cohomology, Comm. Algebra 35 (2007), no. 12, 3821-3827. https://doi.org/10.1080/00927870701511517
  7. N. T. Cuong and N. V. Hoang, Some finite properties of generalized local cohomology modules, East-West J. Math. 7 (2005), no. 2, 107-115.
  8. K. Divaani-Aazar and A. Hajikarimi, Generalized local cohomology modules and homological Gorenstein dimensions, Comm. Algebra, to appear.
  9. K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 (2005), no. 3, 655-660. https://doi.org/10.1090/S0002-9939-04-07728-7
  10. J. Herzog, Komplex Auflosungen und Dualitat in der lokalen Algebra, Habilitationsschrift, Universitat Regensburg, 1970.
  11. C. Huneke, Problems on local cohomology, Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), 93-108, Res. Notes Math., 2, Jones and Bartlett, Boston, MA, 1992.
  12. M. Katzman, An example of an infinite set of associated primes of a local cohomology module, J. Algebra 252 (2002), no. 1, 161-166. https://doi.org/10.1016/S0021-8693(02)00032-7
  13. L. Melkersson, Some applications of a criterion for Artinianness of a module, J. Pure Appl. Algebra 101 (1995), no. 3, 291-303. https://doi.org/10.1016/0022-4049(94)00059-R
  14. J. Rotman, An Introduction to Homological Algebra, Academic Press, San Diego, 1979.
  15. A. K. Singh, p-torsion elements in local cohomology modules, Math. Res. Lett. 7 (2000), no. 2-3, 165-176. https://doi.org/10.4310/MRL.2000.v7.n2.a3

Cited by

  1. ON THE WEAK ARTINIANNESS AND MINIMAX GENERALIZED LOCAL COHOMOLOGY MODULES vol.50, pp.6, 2013, https://doi.org/10.4134/BKMS.2013.50.6.1855
  2. Weakly cofiniteness of local cohomology modules pp.1793-6829, 2018, https://doi.org/10.1142/S0219498819500907