DOI QR코드

DOI QR Code

A q-ANALOGUE OF THE GENERALIZED FACTORIAL NUMBERS

  • Song, Seok-Zun (DEPARTMENT OF MATHEMATICS JEJU NATIONAL UNIVERSITY) ;
  • Cheon, Gi-Sang (DEPARTMENT OF MATHEMATICS SUNGKYUNKWAN UNIVERSITY) ;
  • Jun, Young-Bae (DEPARTMENT OF MATHEMATICS EDUCATION GYEONGSANG NATIONAL UNIVERSITY) ;
  • Beasley, Leroy B. (DEPARTMENT OF MATHEMATICS AND STATISTICS UTAH STATE UNIVERSITY)
  • Published : 2010.05.01

Abstract

In this paper, more generalized q-factorial coefficients are examined by a natural extension of the q-factorial on a sequence of any numbers. This immediately leads to the notions of the extended q-Stirling numbers of both kinds and the extended q-Lah numbers. All results described in this paper may be reduced to well-known results when we set q = 1 or use special sequences.

Keywords

References

  1. G. S. Call and D. J. Vellemam, Pascal’s matrices, Amer. Math. Monthly 100 (1993), no. 4, 372-376. https://doi.org/10.2307/2324960
  2. L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000. https://doi.org/10.1215/S0012-7094-48-01588-9
  3. Ch. A. Charalambides, On the q-differences of the generalized q-factorials, J. Statist. Plann. Inference 54 (1996), no. 1, 31-43. https://doi.org/10.1016/0378-3758(95)00154-9
  4. Ch. A. Charalambides, Non-central generalized q-factorial coefficients and q-Stirling numbers, Discrete Math. 275 (2004), no. 1-3, 67-85. https://doi.org/10.1016/S0012-365X(03)00099-2
  5. G.-S. Cheon and J.-S. Kim, Stirling matrix via Pascal matrix, Linear Algebra Appl. 329 (2001), no. 1-3, 49-59. https://doi.org/10.1016/S0024-3795(01)00234-8
  6. L. Comtet, Nombres de Stirling generaux et fonctions symetriques, C. R. Acad. Sci. Paris Ser. A-B 275 (1972), A747-A750.
  7. L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.
  8. H. W. Gould, The q-Stirling numbers of first and second kinds, Duke Math. J. 28(1961), 281-289. https://doi.org/10.1215/S0012-7094-61-02826-5
  9. L. C. Hsu, A summation rule using Stirling numbers of the second kind, Fibonacci Quart. 31 (1993), no. 3, 256-262.
  10. L. C. Hsu and P. Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math. 20 (1998), no. 3, 366-384. https://doi.org/10.1006/aama.1998.0586
  11. C. Jordan, Calculus of Finite Differences, Chelsea Pub. Co., New York, 1950.
  12. M. Koutras, Noncentral Stirling numbers and some applications, Discrete Math. 42 (1982), no. 1, 73-89. https://doi.org/10.1016/0012-365X(82)90056-5
  13. D. E. Loeb, A generalization of the Stirling numbers, Discrete Math. 103 (1992), no. 3, 259-269. https://doi.org/10.1016/0012-365X(92)90318-A
  14. A. De Medicis and P. Leroux, Generalized Stirling numbers, convolution formulae and p, q-analogues, Canad. J. Math. 47 (1995), no. 3, 474-499. https://doi.org/10.4153/CJM-1995-027-x
  15. S. C. Milne, A q-analog of restricted growth functions, Dobinski's equality, and Charlier polynomials, Trans. Amer. Math. Soc. 245 (1978), 89-118. https://doi.org/10.2307/1998858
  16. H. Oruc and H. K. Akmaz, Symmetric functions and the Vandermonde matrix, J. Comput. Appl. Math. 172 (2004), no. 1, 49-64. https://doi.org/10.1016/j.cam.2004.01.032
  17. C. G. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), no. 1-3, 199-218. https://doi.org/10.1016/0012-365X(95)00112-A

Cited by

  1. ON p, q-DIFFERENCE OPERATOR vol.49, pp.3, 2012, https://doi.org/10.4134/JKMS.2012.49.3.537
  2. On two kinds of q-analogues of generalized Stirling numbers vol.43, pp.2, 2017, https://doi.org/10.1007/s11139-016-9792-2